Idaho Standards Achievement Test (ISAT) in Science

2022-2023

Volume 2: Test Development

TABLE OF CONTENTS

1.	INTRODUCTION	5
1.1	Claim Structure	6
1.2	Underlying Principles Guiding Development	6
1.3	Organization of This Volume	7
2.	ITEM DEVELOPMENT PROCESS THAT SUPPORTS VALIDITY OF CLAIMS	7
2.1	Overview	7
2.2	Item Specifications	15
2.3	Selection and Training of Item Writers	18
2.4	Internal Review	18
	2.4.1 Preliminary Review	19
	2.4.2 Scoring Entry and Review	20
	2.4.3 Content Review One	20
	2.4.4 Edit Review	20
	2.4.5 Senior Review	21
2.5	Review by State Personnel and Stakeholder Committees	22
	2.5.1 State Review	22
	2.5.2 Content Advisory Committee Reviews	22
	2.5.3 Language Accessibility, Bias, and Sensitivity Committee Reviews	23
2.6	2.5.4 Markup for Translation and Accessibility Features	24
2.6	Field I esting	24
2.7	Post-Field-Test Review	25
	2.7.1 Rubric Validation	25
	2.7.2 Data Review	27
3.	SHARED SCIENCE ASSESSMENT ITEM BANK SUMMARY	.30
3.1	Current Composition of the Shared Science Assessment Item Bank	31
3.2	Strategy for Item Bank Evaluation and Replenishment	38
4.	TEST CONSTRUCTION FOR THE IDAHO STANDARDS ACHIEVEMENT TEST IN	
SCIEN	СЕ	.38
41	Test Design	38
4.1	Test Bluenrints	30
4.2	Online Test Construction	53
ч.5 Л Л	Paper-Pencil Accommodation Form Construction	50
		59
5.	SIMULATION SUMMARY REPORT	.59
5.1	Factors Affecting Simulation Results	60
5.2	Results of Simulated Test Administrations: English	60
	5.2.1 Summary of Blueprint Match	60
	<i>5.2.2 Item Exposure</i>	60

	5.2.3	Precision	
5.3	Res	ults of Simulated Test Administrations: Spanish	
	5.3.1	Summary of Blueprint Match	
	5.3.2	Item Exposure	
	5.3.3	Precision	
6.	OPER/	ATIONAL TEST ADMINISTRATION SUMMARY REPORT	63
6.1	Blu	eprint Match	
6.2	Iten	Exposure	
7.	Refer	RENCES	67

LIST OF TABLES

Table 1. Summary of How Each Step of Development Supports the Validity of Claims	.14
Table 2. Sample Science Item Cluster Specifications for Middle School Life Sciences	
Performance Expectation	16
Table 3. Summary of Content Advisory Committee Meetings	. 23
Table 4. Summary of Fairness Committee Meetings	. 24
Table 5. Summary of Data Review Committee Meetings	28
Table 6. Science Interaction Types and Descriptions	31
Table 7. Spring 2023 Shared Science Assessment Operational and Field-Test Item Bank	. 32
Table 8. Spring 2023 Shared Science Assessment Operational Item Bank	34
Table 9. Spring 2023 Shared Science Assessment Field-Test Item Bank	34
Table 10. Spring 2023 Shared Science Assessment Operational and Field-Test Item Bank by	
Science Discipline	35
Table 11. Spring 2023 Shared Science Assessment Operational and Field-Test Item Bank by	
Disciplinary Core Idea	36
Table 12. Science Test Blueprint, Grade 5	40
Table 13. Science Test Blueprint, Grade 8	43
Table 14. Science Test Blueprint, Grade 11	47
Table 15. ISAT in Science 85th Percentile Testing Times by Grade	53
Table 16. Spring 2023 ISAT in Science Operational and Field-Test Item Pool	54
Table 17. Spring 2023 ISAT in Science Operational Item Pool	54
Table 18. Spring 2023 ISAT in Science Field-Test Item Pool	55
Table 19. Spring 2023 ISAT in Science Operational and Field-Test Item Pool by Science	
Discipline	55
Table 20. Spring 2023 ISAT in Science Operational and Field-Test Item Pool by Disciplinary	
Core Idea	57
Table 24. Item Exposure Rates by Grade: Percentage of Items by Exposure Rate, Across All	
English Online Simulation Sessions	61
Table 22. Standard Errors of Ability Estimates, by Grade, Across All English Online Simulation	on
Sessions	61
Table 23. Spring 2023 Spanish Operational Item Pool	62
Table 24. Item Exposure Rates by Grade: Percentage of Items by Exposure Rate, Across All	
Spanish Simulation Sessions	62
Table 25. Standard Errors of Ability Estimates, by Grade, Across All Spanish Online Simulation	on
Sessions	63
Table 26. Spring 2023 Blueprint Match for Test Delivered	64
Table 27. Item Exposure Rates by Grade: Percentage of Items by Exposure Rate, Across All	
Spring 2023 Test Administrations	66

LIST OF FIGURES

Figure 1. Structure of Three-Dimensional Item Clusters	8
Figure 2. Example of an NGSS Item Cluster	9
Figure 3. Example of NGSS Scoring Assertions	12
Figure 4. Features of the REVISE Software	26

LIST OF APPENDICES

Appendix 2-A. Item Writer Training Materials

Appendix 2-B. Item Specifications Grade 3 through High School

Appendix 2-C. Style Guide for Science Items

Appendix 2-D. Item Review Checklist

Appendix 2-E. Content Advisory Committee Participant Details

Appendix 2-F. Fairness Committee Participant Details

Appendix 2-G. Sample Data Review Training Materials

Appendix 2-H. Data Review Committee Participant Details

Appendix 2-I. Example Item Interactions

Appendix 2-J. Shared Science Assessment Item Bank

Appendix 2-K. Idaho Standards Achievement Test in Science Item Pool

Appendix 2-L. Adaptive Algorithm Design

1. INTRODUCTION

Idaho adopted the Next Generation Science Standards (NGSS) in 2018. The Idaho State Department of Education (SDE) and its assessment vendor, Cambium Assessment, Inc. (CAI; formerly the American Institutes for Research [AIR]), developed and administered a new online assessment to measure the new standards. The Idaho Standards Achievement Test (ISAT) in Science was field tested in 2020–2021 and administered operationally for the first time in 2021–2022. The ISAT in Science measures Idaho students' science knowledge and skills in grades 5, 8, and 11 as an adaptive online assessment that features several technology-enhanced item types. The content measures the three-dimensional science standards based on the National Research Council's *A Framework for K–12 Science Education* published in 2012.

Additional details on the implementation of the assessments can be found in Volume 1, Annual Technical Report.

The interpretation, usage, and validity of test scores rely heavily upon the process of developing the test itself. This volume provides details on the test development process for the ISAT in Science that contributes to the validity of the test scores. Specifically, this volume provides evidence to support the following:

- The item specifications provided detailed guidance for item writers and reviewers to ensure that science items were aligned to the performance standards they were intended to measure.
- The item development procedures employed for the ISAT in Science were consistent with industry standards.
- The development and maintenance of the Shared Science Assessment Item Bank, in which test items cover the range of measured standards, grade-level difficulties, and levels of cognitive engagement by using both item clusters and stand-alone items.
- The Test Design Summary/Blueprint stipulated the range of operational items from each item type and content category required for each test administration. The blueprint was implemented using the item selection algorithm for science.

Note that for the science assessments, as outlined in Volume 1, Annual Technical Report, CAI works with a group of states that share common item development processes. In addition to developing items for each of those states, CAI develops and maintains the Independent College and Career Readiness (ICCR) item bank, which consists of items developed according to the same principles that are followed for developing the items owned by each of the states or territory. This volume of the annual technical report focuses on the general test development activities.

For the ISAT in Science, items are drawn from the Shared Science Assessment Item Bank that consists of ICCR items, items owned by Idaho, and items owned by several other states that share a Memorandum of Understanding (MOU) to share content, leadership, and new ideas and methods. Specifically, all items developed under the MOU underwent the same development process. For the remainder of this volume, the term *item bank* will refer to all items developed under the MOU unless stated otherwise.

1.1 CLAIM STRUCTURE

The goals, uses, and claims that the Shared Science Assessment Item Bank and subsequent tests were designed to support were identified in a series of collaborative meetings held over August 22–23, 2016. The overarching goal of these meetings was to support the development of statewide summative assessments using science content that measures the three-dimensional science standards based on *A Framework for K–12 Science Education* (National Research Council, 2012).

To this end, CAI invited content and assessment leaders (e.g., Directors of Assessments) from ten states and four nationally recognized experts, Aneesha Badrinarayan, Rodger Bybee, Peter McLaren, and Brett Moulding, who helped author the NGSS. Two nationally recognized psychometricians, Laurie Wise, Ph.D. and Tom Hirsch, PhD., also participated.

CAI staff and participating states collaborated to develop items and test specifications that would measure the three-dimensional science standards. The item specifications were generally accompanied by sample item clusters that met those specifications. At the time, some standards did not have sample item clusters available. All specifications and sample item clusters were reviewed by state content experts and committees of educators in at least one of the states.

1.2 UNDERLYING PRINCIPLES GUIDING DEVELOPMENT

The Shared Science Assessment Item Bank was established using a highly structured, evidencecentered design. The process began with detailed item specifications. The specifications, discussed in Section 2.2, Item Specifications, described the interaction types that could be used, gave guidelines for targeting the appropriate cognitive engagement, offered suggestions for controlling item difficulty, and provided sample items.

Items were written with the goal that virtually every item would be accessible to all students, either by itself or in conjunction with accessibility tools, such as text-to-speech (TTS), translations, or assistive technologies. This goal is supported by the delivery of the items on CAI's Test Delivery System (TDS), which has received Web Content Accessibility Guidelines (WCAG) 2.0 AA certification, offers a wide array of accessibility tools, and is compatible with most assistive technologies.

Item development supported the goal of high-quality item clusters and stand-alone items through rigorous development processes managed and tracked by a content development platform. This platform ensures that every item flows through the correct sequence of reviews and captures every comment and change to the item.

CAI sought to ensure that the items measured the performance standards in a fair and meaningful way by engaging educators, state officials, content experts, and fairness, bias, and sensitivity experts at each step of the process. Educators evaluated the alignment of the items to the standards and offered guidance and suggestions for improvement. These educators participated in the review of items for fairness and sensitivity. Following item field-testing, educators engaged in rubric validation, a process that refines rule-based rubrics upon review of student responses.

Combined, these principles and the processes that support them have been incorporated into an item bank that measures the standards with fidelity and does so in a way that minimizes construct-

irrelevant variance and barriers to access. The details of these processes are described in this volume of the annual technical report.

1.3 ORGANIZATION OF THIS VOLUME

This volume is organized into the following three sections:

- 1. An overview of the science item development process that supports the validity of the claims that science tests are designed to support.
- 2. An overview of the science item bank¹, the types of assessments the item bank is designed to support, and methods for refreshing the item bank.
- 3. A description of the test construction process for the ISAT in Science, including the blueprint, the test design, an evaluation of simulated test sessions, the operational blueprint match results, and the item exposure rates.

2. ITEM DEVELOPMENT PROCESS THAT SUPPORTS VALIDITY OF CLAIMS

2.1 OVERVIEW

Cambium Assessment, Inc. (CAI) developed the Shared Science Assessment Item Bank in collaboration with the states that were part of the Memorandum of Understanding (MOU) using a rigorous, structured process that engaged stakeholders at critical junctures. This process was managed by CAI's Item Tracking System (ITS), which is an auditable content-development tool that enforces rigorous workflow and captures each item change and comment. Reviewers, including internal CAI reviewers or stakeholders in committee meetings, can review items in ITS as they will appear to the student, with all accessibility features and tools.

A performance expectation is a point in a three-dimensional space formed by three dimensions of science learning: crosscutting concepts (CCCs), science and engineering practices (SEPs), and disciplinary core ideas (DCIs). That is, a performance expectation (PE) is characterized by a specific CCC, SEP, and DCI. When the MOU states first convened, many sessions were spent discussing how to assess these new three-dimensional standards. These group sessions are where the idea of an item cluster was conceived. An *item cluster* consists of a stimulus (scientific phenomenon) associated with multiple parts. Each of these parts contain questions that allow the student to explore the phenomenon. Each of the parts assess at least two dimensions, and the entire item cluster assesses a student on all three dimensions for a specific PE. Figure 1 is a visual representation of the structure of a three-dimensional cluster.

¹This is often referred to as the Shared Science Assessment Item Bank.

Figure 1. Structure of Three-Dimensional Item Clusters

Each part of an item cluster contains questions that require the student to interact with the item cluster. There are many different interactions that can be included in an item cluster. Section 3.1, Current Composition of the Shared Science Assessment Item Bank, describes and lists all of the different interactions available. The interactions used in an item cluster are chosen intentionally to best assess different aspects of the three-dimensional construct.

Figure 2 provides an example of an item cluster that has a phenomenon, five parts, and eight interactions; each part of an item cluster assesses multiple dimensions.

A student rings a doorbell. When the person inside the house is on the main floor, he can easily hear the doorbell. When he is upstairs, though, he cannot so easily hear the doorbell. Part A Click on each blank box and select a phrase to describe what is happening to the energy at each part of the circuit when the doorbell is turned on. Figure 1 shows the circuit of a simple doorbell when it is on (pressed) and off (not pressed) Energy Pathway when Doorbell Is on Parts Figure 1. Simple Doorbell Circuit Battery Energy is stored. Doorbell On Wires Energy is transferred. 🗘 Speaker Electrical energy is converted to sound energy. Part B [[])) Use the simulation to select the materials necessary to conduct fair experiments and create a doorbell that can be heard from upstairs and costs less than \$40. The student can only hear a doorbell from upstairs if it is loud or very loud. Doorbell Off Select the speaker, battery, and switch to determine the overall cost and loudness of the doorbell. Then click Run Trial. The cost of wire has already been included in the total cost. You must complete two trials You may run up to five trials. Click the trash can icon if you want to delete a trial and generate new data. battery 11 Table 1 shows the types of doorbell speakers available and their cost, in dollars (\$). $) \bigcirc$ Table 1. Types of Speakers and Cost Speaker Cost (\$) Bell 11 Buzzer 17 Speaker Bell V Battery 1.5 V Cost (\$) rial Speaker Battery (V itch Chimes 25 1 Bell 9.0 Rectangular 18 Loud 1 Switch (Rectangular 🗸 2 Bell Table 2 shows the types of batteries available based on their voltage (V), the amount of power each produces, and their cost. 12.0 Rectangular Very Loud 42 1 Run Trial 3 Bell No Sound 16 1.5 Rectangular Û Table 2. Types of Batteries and Cost 4 Chimes 9.0 Lighted Quiet 39 . Battery (V) Amount of Power Cost (\$) 5 Bell 9.0 Lighted Loud 25 . 12 A lot 27 9 Average 3 1.5 A little Table 3 shows the types of switches and their cost. Part C Select all of the trials that meet the criteria for being heard upstairs and cost less than \$40. Table 3. Types of Switches and Cost Trial 1 Switches Cost (\$) Rectangular 4 Trial 2 Circular 5 Lighted 11 🗌 Trial 3 Your Task Trial 4 In the questions that follow, you will design a main-floor doorbell Trial 5 that can be heard from upstairs in a house None Part D Click on the blank boxes and select words or phrases to predict what will happen to the loudness of the doorbell when the battery power increases. The loudness of the doorbell will increase \Diamond because more energy is stored in the battery. \Diamond Part E Select ${\bf two}$ trials that support the relationship between the loudness of the doorbell and the power of the battery. 🗌 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Cannot be determined

Figure 2. Example of an NGSS Item Cluster

This item cluster is aligned to the NGSS PE of 4-PS3-4: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. The PE uses the following three elements of the three-dimensional standards: (1) Constructing Explanations and Designing Solutions (i.e., SEP), (2) Conservation of Energy and Energy Transfer (i.e., DCI), and (3) Energy and Matter (i.e., CCC).

Part A requires students to demonstrate their knowledge of how energy is stored, transferred, or used within the system. In this item cluster, they must know how a battery, wires, and a speaker work within the circuit. This aligns with the DCI and the CCC.

Part B requires students to design and test designs that use electricity to produce a sound. This aligns with the DCI (how changes in current influence the production of sound) and the SEP (designing and testing solutions to a design problem).

Part C requires students to compare their designs with some criteria and constraints. This aligns with the SEP (designing and testing solutions) and the CCC (energy can be transferred in various ways and between objects). The answer for Part C is directly determined by how the student completes Part B. If all of the trials the student runs in Part B meet the given criteria, then all of those must be selected to be considered as correct in Part C. Therefore, there are multiple different ways to get this item correct.

Part D requires students to make a prediction from the evidence that they generated in Part B. This part is aligned to all three dimensions. The student has used their designs and information (representing SEP) from Part B to show how energy is transferred between objects (representing CCC) and specifically how increasing the current changes the volume (representing DCI).

Like Part C, Part E is dependent on Part B. Students are determining which trials support the prediction that they made in Part D. This part, combined with Part D and Part B, addresses all three dimensions of the PE.

The next big challenge for the MOU states was to properly score these item clusters so that all evidence of understanding the PEs and three dimensions could be collected. It was determined that scoring assertions would be the best way to capture and score student responses on item clusters. Scoring assertions were evidence statements that related specific features from the student response to skills and knowledge that were tested (of which they provide evidence). The use of these assertions in scoring created a direct linkage between what the student does and the inferences about the skills and knowledge that the student's response supports. This approach provided a physical embodiment of evidence-centered design, Mislevy and Haertel's well-regarded approach to cognitive measurement (Mislevy & Haertel, 2006). This also provided a structure for ensuring and reviewing alignment during test development and a clear explanation of what was measured, how it was measured, and why it was measured when tests were scored and reported.

By inspecting the student response for every meaningful piece of student input, more information about student skills and knowledge can be harvested than in a single interaction. In fact, evidence for some scoring assertions may derive from two or more interactions within an item cluster. This may happen if one interaction is dependent on another interaction, allowing for multiple solution paths. This is one of the primary reasons that scoring assertions within item clusters can show deeper cognitive understanding and higher-order thinking that is required of the three-dimensional science standards.

Each of the parts in an item cluster likely has one or more scoring assertions where student skills and knowledge are being collected. The scoring mechanism has the capability to focus on one interaction, one part, or to focus across multiple interactions and parts as determined by the item writers, subject-matter expert (SME) reviewers and performance expectations. All permutations and combinations of measurable actions can be captured with scoring assertions.

The example item cluster from this section has seven assertions. Each scoring assertion is described in detail in Figure 3.

Figure 3. Example of NGSS Scoring Assertions

Your response earned 7 points of a possible 7

Score Rationale	
When asked to describe what is happening to the energy for the battery when the doorbell is turned on, the student selected "energy is stored" or "energy is transferred." This provides some evidence of an ability to complete a causal chain explaining how energy can be transferred via electric current to produce light, sound, heat, and /or motion.	~
When asked to describe what is happening to the energy of the wires when the doorbell is turned on, the student selected "energy is transferred." This provides some evidence of an ability to complete a causal chain explaining how energy can be transferred via electric current to produce light, sound, heat, and /or motion.	~
When asked to describe what is happening to the energy of the speaker when the doorbell is turned on, the student selected "electrical energy is converted to sound energy." This provides some evidence of an ability to complete a causal chain explaining how energy can be transferred via electric current to produce light, sound, heat, and /or motion.	~
The student ran at least two trials and ran at least one trial in which they selected components of a doorbell that produced "Loud" or "Very Loud" sound and that included components that cost less than \$40. This provides some evidence of an ability to select characteristics to be manipulated while gathering information to determine the loudest, cost-effective doorbell.	~
When asked to select the trial that met the criteria for being heard upstairs and cost less than \$40, the student selected all trials from their simulation that produced "Loud" or "Very Loud" sound and cost less than \$40. This provides some evidence of an ability to use given information to design and test a device that converts energy from one form to another.	~
When asked to predict what will happen to the sound of the doorbell if the battery power increases, the student selected "The loudness of the doorbell will increase because more energy is stored in the battery." This provides some evidence of an ability to use an explanation to predict how the sound of an object changes, given a change in the conversion of stored energy.	~
When asked to select the trials that support the relationship between the loudness of the doorbell and the power of the battery, the student selected two trials from the simulation in which the loudness was higher for the trial with a battery with more power. This provides some evidence of an ability to use evidence to support an inference.	~

Assertion texts like the one shown in Figure 3 are written for every assertion in every item. They describe the correct response and what evidence should be provided by the student's response.

In the example item cluster, Part A has three assertions. Each one "provides some evidence of an ability to complete a causal chain explaining how energy can be transferred via electric current to produce light, sound, heat, and/or motion." The student must know something about electrical energy (DCI) and how it is transferred or used (DCI and CCC) to correctly respond. One assertion corresponds to each row in the table (i.e., one for Battery, one for Wires, and one for Speaker).

Part B has two assertions. The first "provides some evidence of an ability to select characteristics to be manipulated while gathering information to determine the loudest, most cost-effective doorbell." The second assertion "provides some evidence of an ability to use given information to design and test a device that converts energy from one form to another." The student must use their knowledge of how electrical energy is used and transferred (DCI) and how to design and test a device using electricity (SEP) to correctly interact with Part B.

Part C has one assertion, as the student's selections are not independent of each other. The assertion "provides some evidence of an ability to use given information to design and test a device that converts energy from one form to another." The student must be able use generated evidence to support a design decision (SEP) about the transfer of energy (CCC). This assertion is pulling responses from both Parts B and C. This is precisely how item clusters and assertions can assess multiple dimensions and higher levels of complexity, as students are running their own experiments and analyzing the outcomes, no matter what those outcomes are.

Part D has one assertion. The assertion "provides some evidence of an ability to use an explanation to predict how the sounds of an object changes, given a change in the conversion of stored energy." This shows how the student must use elements from all three dimensions to respond correctly to this assertion. The student uses data from their generated designs and makes a prediction using that data to support their knowledge of energy and energy transformations.

Part E also has one assertion. The assertion "provides some evidence of an ability to use evidence to support an inference." In this case, it is an inference about the relationship between the available battery power and the loudness of the bell. Again, this scoring assertion is pulling information from three different parts (Parts B, D, and E).

While each part of the item, each interaction within the item, or each assertion may not be three-dimensional, the item cluster as a whole represents all three dimensions. It also provides an organized flow of cognition from scaffolding (Part A), through the engineering process (Parts B and C), to a conclusion and evidentiary support of the conclusion (Parts D and E).

The assertion text explains how a student responded to a given task and what that task shows evidence of. This allows us to ensure that items allow each student an opportunity to show what they know and what their knowledge, skills, and abilities show about their understanding of science and engineering.

Once the item cluster, along with interactions and scoring assertions, came to fruition, CAI and the group of states were able to begin item and test development in earnest.

The item development process was managed by CAI's Item Tracking System (ITS), which is an auditable content-development tool that enforces rigorous workflow and captures each item change and comment. Reviewers, including internal CAI reviewers or stakeholders in committee meetings, can review items in ITS as they will appear to the student, with all accessibility features and tools.

The process begins with the definition of item specifications, and continues with

- selection and training of item writers;
- writing and internal review of items;

- review by state personnel and stakeholder committees;
- markup for translation and accessibility features;
- field-testing; and
- post-field-test reviews.

Each step has a role in ensuring that the items can support the claims on which they will be based. Table 1 describes how each step contributes to these goals and describes each step in the process in more detail.

Developmental Support Alignment to Steps Standards		Reduce Construct- Irrelevant Variance Through Universal Design	
Item specifications	Specifies item interactions, content limits, and guidelines for meeting task demands and levels of cognitive engagement requirements and adjusting difficulty.	Avoids the use of any item interactions with accessibility constraints and provides language guidelines. Allows for multiple response modes to accommodate different styles.	
Selection and training of item writers	Ensures that item writers have the background to understand the performance standards and item specifications. Teaches item writers how to select item interactions for measurement and accessibility.	Training in language accessibility, and bias, and sensitivity helps item writers avoid unnecessary barriers.	
Writing and internal review of items	Checks content alignment and evaluates and improves overall quality.	Eliminates editorial issues and flags and removes bias and accessibility issues.	
Markup that prepares items for translation and accessibility features		Adds universal features, such as text- to-speech (TTS) for science, that reduce barriers.	Adds TTS, braille, American Sign Language (ASL), translations, and glossaries.
Review by state personnel and stakeholder committees	Checks content and cognitive complexity alignment; evaluates and improves overall quality.	Flags sensitivity issues.	
Field-testing	Provides statistical checks on quality and flags issues.	Flags items that appear to function differently for subsequent review to identify issues.	May reveal usability or implementation issues with markup.

Table 1. Summary of How Each Step of Development Supports the Validity of Claims

Developmental Steps	Support Alignment to the Performance Standards	Reduce Construct- Irrelevant Variance Through Universal Design	Expand Access Through Linguistic and Other Supports
Post-field-test reviews	Provides final, more focused checks on flagged items. Rubric validation ensures that scoring reflects standards.	Provides final, focused review on items flagged for differential item functioning (DIF).	

2.2 ITEM SPECIFICATIONS

CAI is working with a group of states and one U.S. territory, psychometricians, and science experts, including the authors of the NGSS, to develop powerful innovative solutions to the challenges of measuring three-dimensional science standards based on the National Research Council's *A Framework for K–12 Science Education* published in 2012. Participating states, included Connecticut, Hawaii, Idaho, Montana, Oregon, Rhode Island, Utah, West Virginia, and Wyoming were involved in all activities. New Hampshire, North Dakota, South Dakota, and U.S. Virgin Islands participated in some activities. This collaboration has yielded item specifications for performance expectations (PEs)², sample item clusters for some specifications, and hundreds of science item clusters and stand-alone items in various stages of development. Under this collaboration, these states and the U.S. Virgin Islands jointly developed item specifications using the guidelines proposed by WestEd in conjunction with the Council of Chief State School Officers (CCSSO), state and territory members, and content experts (CCSSO, 2015).

Item specifications are documents designed to guide item writers as they craft test questions and stakeholders as they review those items. These specifications are intended to serve as a roadmap for writers to facilitate the creation of items that are properly aligned to the three dimensions comprising each science standard and that together form coherent item clusters and stand-alone items. Table 2 provides a sample of the item specifications developed by content experts for a middle school Life Sciences PE. Item specifications in Science include the following:

- **Performance Expectations/Performance Standards.** The PE provides the unique identifier and the text for the PE.
- **Dimensions.** The dimensions identify the CCCs, SEPs, and DCIs that the standard assesses.
- **Clarifications and Content Limits.** This section delineates the specific content that the PE measures and the parameters in which items must be developed to assess the PE accurately, including the lower and upper complexity limits of items. Specifically, content limits refine the intent of the PE and provide limits of what may be asked of

²Performance expectations under the NGSS framework are similar to performance standards in the Idaho State Science Standards.

test takers. For example, content limits may identify the specific formulae that students are expected to know or not know.

- Science Vocabulary. The science vocabulary outlines the relevant technical words that students are expected to know, and related words that they are explicitly not expected to know. These categories should not be considered exhaustive, as the boundaries of relevance are ambiguous, and the list is limited by the imagination of the writers.
- **Content/Phenomena.** Examples of the types of content/phenomena that support creating effective items related to the standard in question. In general, these are guideposts, and item writers seek comparable phenomena, rather than drawing on those within the documents.
- **Task Demands.** The task demands denote the specific ways students will be expected to provide evidence of their understanding of the concept or skill. Specifically, the task demands identify the types of interactions and activities that item writers should employ. The standards and associated evidence statements are broken down into specific task demands aligned to each standard. Item writers are required to clearly link each item to one or more task demand, and the verbs guide the types of interactions writers might employ to elicit the student response.

Table 2 provides a sample of the item specifications developed by content experts for a middle school Life Sciences performance standard.

Dorformonoo	LS1-MS-1 ^a				
Expectation	Conduct an investigation to provide evidence that living things are made of cells; either one				
Слресканон	cell or many different numbers	and types of cells.			
Dimensions	Planning and Carrying Out	LS1.A: Structure and	Scale, Proportion, and		
	Investigations	Function	Quantity		
	 Conduct an investigation to produce data to serve as the basis for evidence that meets the goals of an investigation. 	 All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular). 	Phenomena that can be observed at one scale may not be observable at another scale.		
Clarifications	Clarification Statements	, , , , , , , , , , , , , , , , , , ,			
and Content	 Emphasis is placed on 	developing evidence that living	things are made of cells,		
Limits	d understanding that living				
	Content Limits				
	<u>Students do not need to know the following:</u>				
	 The structures 	or functions of specific organell	es or different proteins		
	 Systems of sp 	ecialized cells			

Table 2. Sample Science Item Cluster Specifications for Middle School Life Sciences Performance Expectation

	 The mechanisms by which cells are alive Specifics of DNA and proteins or of cell growth and division Endosymbiotic theory Histological procedures 				
Science Vocabulary Students Are Expected to Know Science Vocabulary Students Are	Multicellular, unicellular, cell, tissue, organ, system, organism hierarchy, bacteria, colony, yeast, prokaryote, eukaryote, magnify, microscope, DNA, nucleus, cell wall, cell membrane, algae, chloroplast(s), chromosome, cork Differentiation, mitosis, meiosis, genetics, cellular respiration, energy transfer, RNA, protozoa, amoeba, histology, protists, archaea, nucleoid, plasmid, diatoms, cyanobacteria				
Not Expected to					
KIIOW	Phenomena				
Context/ Phenomena This Performar	 Some example phenomena for LS1-MS-1 include the following: Plant leaves and roots have tiny, box-like structures that can be seen under a microscope. Small creatures can be seen swimming in samples of pond water viewed through a microscope. Different parts of a frog's body (e.g., muscles, skin, tongue) are observed under a microscope, and are seen to be composed of cells. One-celled organisms (e.g., bacteria, protists) perform the eight necessary functions of life, but nothing smaller has been seen to do this. Swabs from the human cheek are observed under a microscope. Small cells can be seen. 				
	Task Demands				
1. Identify from a l unit of life (cell).	ist the materials/tools, including distractors, needed for an investigation to find the smallest				
2. Identify the out	come data that should be collected in an investigation of the smallest unit of living things.				
3. Evaluate the su the cell.	fficiency and limitations of data collected to explain that the smallest unit of living things is				
4. Make and/or record observations about whether the sample contains cells. ^b					
5. Interpret and/or	communicate data from the investigation to determine if a specimen is alive.				
6. Construct a sta	tement to describe the overall trend suggested by the observed data.				

^{*a*}LS1-MS-1 is the PE code for Middle School Life Sciences 1-1.

^bDenotes task demands deemed appropriate for use in stand-alone item development.

The specifications help test developers create item clusters and stand-alone items that will support a range of difficulty, furthering the goal of measuring the full range of performance found in the population, but remaining at grade level.

2.3 SELECTION AND TRAINING OF ITEM WRITERS

All item writers developing science items at CAI have at least a bachelor's degree, and many bring teaching experience. All item writers are trained in

- the principles of universal design;
- the appropriate use of item interactions; and
- the science item specifications.

Key materials are shown in *Appendix 2-A*, *Item Writer Training Materials*, *Appendix 2-B*, *Item Specifications Grade 3 through High School*, and *Appendix 2-C*, *Style Guide for Science Items*. These include

- CAI's language accessibility, bias, and sensitivity (LABS) guidelines;
- a training (presented using Microsoft PowerPoint) for the appropriate use of item interactions;
- item specification for science for grades 3 through high school; and
- style guide for science items.

2.4 INTERNAL REVIEW

CAI's test development structure uses highly effective units organized around each content area. Unit directors oversee team leaders who work with team members to ensure item quality and adherence to best practices. All team members, including item writers, are content-area experts. Teams include senior content specialists who review items before client review and provide training and feedback for all content-area team members.

ICCR and MOU science items undergo a rigorous, multi-level internal review process before they are sent to external review. Staff members are trained to review items for both content and accessibility throughout the process. A sample item review checklist that our test developers use is included in *Appendix 2-D, Item Review Checklist*. The ICCR and MOU science internal review cycle includes the following phases:

- Preliminary Review
- Scoring Entry and Review
- Content Review One
- Edit Review
- Senior Review

2.4.1 Preliminary Review

Team leads or senior content staff conduct Preliminary Review. Sometimes, Preliminary Review is conducted in a group setting, led by a senior test developer. During the Preliminary Review process, team leads or senior content staff analyze items to ensure the following:

- The item aligns with the PE, including the listed SEP, DCI, and CCC. The item matches the item specification for the skills and knowledge being assessed. The item specification contains clarifying statements, content limits, and task demands, as well as knowledge, skills, and abilities that the PE is intended to assess.
- The item is based on a quality scientific phenomenon (i.e., it assesses something in a reasonable way, and it is a discrete observation that grounds a scenario, which allows for the assessment of something worthwhile in a meaningful way). A quality phenomenon is one that is natural, observable (even with instrumentation), and focused on a specific event, not a general category of similar events (e.g., the effects of Hurricane Katrina, not hurricanes in general).
- The item aligns appropriately with the task demands. Task demands are statements about what a student is expected to do with a phenomenon.
- The vocabulary used in the item is appropriate for the grade and subject matter. Most non-technical language is two grade levels below the testing grade to ensure that language is not a construct-irrelevant issue.
- The item considers language accessibility, bias, and sensitivity.
- The content is accurate and straightforward.
- The graphic and stimulus materials are necessary to answer the question. The phenomenon is described in the stimulus. Graphics are necessary and contain only the relevant information.
- The item follows the approved style guide.
- The stimulus is clear, concise, and succinct (i.e., it contains enough information to convey what is being asked, it is stated positively, and it does not rely on negatives—such as *no, not, none,* or *never*—unless necessary).

For selected-response item interactions, test developers also check to ensure that the set of response options are

- as succinct and short as possible (e.g., without repeating text);
- parallel in structure, grammar, length, and content;
- sufficiently distinct from one another;
- all plausible (but with only one correct option); and
- free of obvious or subtle cuing.

2.4.2 Scoring Entry and Review

During Scoring Entry, the item writer inputs the machine scoring for review by the team lead or senior staff before the Content Review One level. This step is separate from Preliminary Review to allow senior staff to suggest changes to the interaction at Preliminary Review without requiring the writer to overhaul the scoring they already created, ensuring that the scoring is entered once, streamlining the process. This step also allows senior staff to ensure that the scoring suggested by the writer at Preliminary Review is appropriate. At this level, scoring is analyzed to ensure the following criteria:

- The scoring works as intended (i.e., the student gets a point for ALL correct responses and no points for ALL incorrect responses).
- The student receives a point for every unique piece of information they reveal about their understanding through their responses.
- Dependent scoring between and within interactions is captured.
- The way in which the scoring is set up is unambiguous and matches the questions asked (i.e., if we ask students to round a number to a certain decimal place, we score accordingly).

The senior staff approves the intent of the scoring from the Preliminary Review. At the Scoring Entry level, the writer inputs the approved scoring, after which senior staff checks the functionality of the scoring. Once the scoring is determined to be working correctly, the senior staff signs off on the item and moves it to Content Review One.

Senior staff are recruited based on experience and time in the assessment field. Senior staff are the reviewers of the intent of scoring because of their experience and knowledge of assessment, the expectations of the clients, and their understanding of student responses.

2.4.3 Content Review One

Content Review One is conducted by a senior content specialist who was not part of the Preliminary Review. This reviewer carefully examines each item based on the same criteria identified for Preliminary Review. They also ensure that the revisions made during the Preliminary Review did not introduce errors or content inaccuracies. This reviewer approaches the item by combining their expertise in test development while engaging from the perspective of potential clients and their expertise in test development.

2.4.4 Edit Review

During Edit Review, editors have four primary tasks:

- 1. Editors perform basic line editing for correct spelling, punctuation, grammar, and mathematical and scientific notation, ensuring consistency of style across the items.
- 2. Editors ensure that all items are accurate in content. Editors compare reading passages against the original publications to ensure that all information is internally consistent across stimulus materials and items, including names, facts, or cited lines of text that

appear in the item. They ensure that the keys and all information in the item are correct. Keys are the correct answers to interactions. Information refers to the phenomena and the science content. For items with mathematical tasks, editors perform all calculations to ensure accuracy.

- 3. Editors review all material for fairness and language accessibility issues.
- 4. Editors confirm that items reflect the accepted guidelines for good item construction. They examine all items for language that is simple, direct, and free of ambiguity with minimal verbal difficulty. Editors confirm that a problem or task and its stem are clearly defined and concisely worded with no unnecessary information. For multiple-choice interactions, editors check that options are parallel in structure and fit logically and grammatically with the stem. They also ensure that the key answer (i.e., correct answer) answers the question posed accurately and correctly, is not inappropriately obvious, and is the only correct answer to an item among the distractors. For constructed-response interactions, editors review the rubrics for appropriate style and grammar.

2.4.5 Senior Review

By the time a science item arrives at Senior Review, both content reviewers and editors have thoroughly vetted it. Senior reviewers (in particular, senior content specialists) look at the item's entire review history, ensuring that all the issues identified in that item have been adequately addressed. Senior reviewers verify the overall content of each item, confirming its accuracy, alignment to the PE, and consistency with expectations for the highest quality. They check whether the scoring is working as intended and scoring assertions adequately address the evidence the student provides with each type of response.

Some examples of questions from the internal Review Checklist are listed below. These are the questions that reviewers ask of the item to ensure that it is three dimensional and properly aligned to the PE. A similar checklist is used at earlier stages.

- Is the phenomenon based on a specific real-world scenario and focused enough to get the student to investigate what the PE intends for them to investigate (i.e., the students' application of the Practice in the context of the DCI and CCC as intended by the PE is sufficient to make sense of the phenomena)?
- What information should the student already have before starting the cluster (DCI knowledge)?
- Cluster Task Statement: Does it align to the focus and intent of the PE?
- Does the interaction require the student to demonstrate the science practice and/or content that the PE is assessing them on?
- Do the interactions align with the task demands?

2.5 REVIEW BY STATE PERSONNEL AND STAKEHOLDER COMMITTEES

All science items undergo an exhaustive external review process. Items in the Shared Science Assessment Item Bank were reviewed by content experts in one or several states and reviewed and approved by multiple stakeholder committees that evaluated them for both content and bias and sensitivity.

2.5.1 State Review

After items have been developed for a state participating in the MOU, content experts from the state that owns the item review any eligible items before committee review. At this stage in the review process, clients can request edits, such as wording edits, scoring edits, alignment changes, or task demand updates. A CAI science content expert reviews all client-requested edits considering the science item specifications, other clients' requests, and existing items in the bank to determine whether the requested edits will be made. At this stage, clients have the option to present these items to the committee (based on the edits made) or withhold them from committee review.

ICCR items are reviewed by at least three individuals from one or more states in the MOU. The states or territory provide feedback on the ICCR items, and CAI science leadership gathers suggestions and makes edits that improve the ICCR item. Not all suggestions are implemented, as CAI owns these items. Further, most MOU states or territory accept or reject ICCR and MOU items (as they appear at the time) to be presented to their committees. Some clients skip this step and allow CAI to review all items with their committees before reviewing them. These items can be either set for field-testing in a future administration or become a part of the locked operational pool.

2.5.2 Content Advisory Committee Reviews

During the Content Advisory Committee (CAC) reviews, items are reviewed for content accuracy, grade-level appropriateness, and alignment to the PE. CAC members are typically grade-level and subject-matter experts. During this review, educators also ensure that the scoring assertions clearly identify what is being scored as correct and give credit where they should (refer to Section 2.7.1, Rubric Validation). Before the CAC review begins, CAI provides a presentation on the three-dimensional science standards, the item development process, the CAI systems that will be used in the review, and how to review the items for content.

Items developed for each state under the MOU are reviewed by the state that owns those items. ICCR items are reviewed by the CAC of one or more states. In most cases, items are seen by multiple state committees before their field-test or operational use.

In 2023, the MOU states were all involved in a single CAC process where participants from multiple states reviewed items. The items were edited and then returned to the owning state for final approval.

A summary of 2022-2023 the committee meetings is presented in Table 3, with additional details about the participants in *Appendix 2-E, Content Advisory Committee Participant Details*. Appendix E also contains detailed information about the participants of CAC meetings of previous years.

State/ Item Bank Meeting		Number of Committee Members	Number of Items Reviewed
Connecticut	June/ August 2022ª	26	65
	July 2022	21	62
Hawaii	June/ August 2022ª	25	46
	July 2022	9	45
	July 2022	9	306
ICCR	June/ August 2022ª	12	121
Idaho	June/ August 2022ª	14	12
	July 2022	5	244
Montana	June/ August 2022ª	9	13
Oregon	July 2022	14	66
Rhode Island	October 2022	20	115
Utah	September 2022	28	111
West Virginia	June/ August 2022ª	8	13
Wyoming	June/ August 2022ª	9	37

Table 3. Summary of the 2022-2023 Content Advisory Committee Meetings

^aItems were reviewed in a combined Content Advisory Committee Meeting that included ICCR and MOU state-owned items. Items reviewed in the combined meetings are displayed by their respective state or bank of ownership.

2.5.3 Language Accessibility, Bias, and Sensitivity Committee Reviews

During bias and sensitivity reviews, stakeholders review items to check for issues that might unfairly impact students based on the students' background. For example, some states or territories include representatives from student populations such as special education, low vision, and the hearing impaired. Further, diverse members of this committee represent students of various ethnic and economic backgrounds to ensure that all items are free of bias and sensitivity concerns. States try to ensure that all demographics are represented when providing committee members. For example, if a state has a Native American population, they will try to ensure that the Bias and Sensitivity Committee has Native American representation on the committee. Before the bias and sensitivity review begins, CAI provides a presentation on the three-dimensional science standards, the item development process, the CAI systems that will be used in the review, and how to review the items for fairness.

During 2020–2022, due to the COVID-19 pandemic, CAI reviewed items that contained references to virus, vaccine, bacteria, disease, infection, and related words and phrases. CAI content experts reviewed 65 items and rejected one item for sensitivity concerns.

In 2023, the MOU states were all involved in a single review process where participants from multiple states would review items. The items were edited and then returned to the owning state for final approval.

A summary of the 2022-2023 committee meetings is presented in Table 4, with additional details about the participants in *Appendix 2-F, Fairness Committee Participant Details*. Appendix 2-F also contains detailed information about the participants of Fairness Committee meetings of previous years.

State/ Item Bank	Meeting	Number of Committee Members	Number of Items Reviewed	Number of Items Rejected
Connecticut	June/ August 2022ª	3	65	2
	August 2022	19	154	27
Hawaii	June/ August 2022ª	6	46	0
	July 2022	9	45	0
	July 2022	9	306	0
ICCR	June/ August 2022ª	7	121	3
Idaho	June/ August 2022ª	4	12	0
Montana	June/ August 2022ª	4	13	0
Oregon	July 2022	9	43	2
Rhode Island	October 2022	20	115	22
Utah	September 2022	28	111	12
West Virginia	June/ August 2022 ^a	3	13	0
Wyoming	June/ August 2022ª	6	37	0

Table 4. Summary of the 2022-2023 Fairness Committee Meetings

^aItems were reviewed in a combined Fairness Committee Meeting that included ICCR and MOU state-owned items. Items reviewed in the combined meetings are displayed by their respective state or bank of ownership.

2.5.4 Markup for Translation and Accessibility Features

After all approved state/territory- and committee-recommended edits have been applied, the items are considered "locked" and ready for a portion of the accessibility tagging. Text-to-speech (TTS) tagging is applied prior to field testing while Spanish translations and braille are applied post-field-testing. Accessibility markup is embedded into each item as part of the item development process rather than as a *post-hoc* process applied to completed tests.

Accessibility markup, whether for translations or TTS, follows similar processes. One trained expert enters the markup, and then a second expert reviews the work and recommends changes if necessary. If there is disagreement, a third expert is engaged to resolve the issue.

Currently, science items are tagged with TTS. Spanish translations, including Spanish TTS and braille, are available for a subset of items.

2.6 FIELD TESTING

A large pool of science field-test items was administered in the following nine states in spring 2018: Connecticut, Hawaii, New Hampshire, Oregon, Rhode Island, Utah, Vermont, West Virginia, and Wyoming³. For Hawaii, Oregon, and Wyoming, items were embedded as field-test

³Idaho joined in 2019 after the Idaho SDE adopted the new Idaho State Science Standards in 2018.

items in the legacy science test. Connecticut and Rhode Island conducted an independent field test in which all students participated, but no scores were reported. In New Hampshire, Utah, Vermont, and West Virginia, an operational field test was administered.

In 2019, a second pool of field-test items was administered in the following nine states: Connecticut, Hawaii, Idaho, New Hampshire, Oregon, Rhode Island, Vermont, West Virginia, and Wyoming. For Hawaii, Idaho (elementary school), and Wyoming, unscored field-test items were added as a separate segment to the operational (scored) legacy science test. An independent field test in which students were administered a full set of items was conducted for a sample of Idaho middle schools. In Connecticut, New Hampshire, Oregon, Rhode Island, Vermont, and West Virginia, field-test items were administered as unscored items embedded within the operational items.

In 2021, a third wave of field-test items was administered in 12 states: Connecticut, Hawaii, Idaho, Montana, New Hampshire, North Dakota, Rhode Island, South Dakota, Utah, Vermont, West Virginia, and Wyoming. An independent field test, in which students were administered a full set of items, was conducted for Idaho and Montana. Unscored field-test items were added as a separate segment to the operational (scored) legacy science test for Wyoming. In the remaining nine states, field-test items were administered as unscored items embedded within the operational items.

In 2022, a fourth wave of field-test items was administered in 13 states and one U.S. territory: Connecticut, Hawaii, Idaho, Montana, New Hampshire, North Dakota, Oregon, Rhode Island, South Dakota, Utah, Vermont, West Virginia, Wyoming, and U.S. Virgin Islands. In all 13 states and the territory, field-test items were administered as unscored items embedded within the operational items.

In 2023, items were field-tested in 12 states and one U.S. territory: Connecticut, Hawaii, Idaho, Montana, New Hampshire, North Dakota, Oregon, Rhode Island, South Dakota, Utah, West Virginia, Wyoming, and U.S. Virgin Islands. Field-test items were administered as unscored items embedded within the operational items. CAI's field-test process is described in detail in Section 3.2, Field-Testing, in Volume 1 of this technical report.

2.7 POST-FIELD-TEST REVIEW

Following field testing, items are subject to a substantial validation process. This includes rubric validation and data review. These processes are described in Section 2.7.1, Rubric Validation, and Section 2.7.2, Data Review.

2.7.1 Rubric Validation

The validation process for the field-test items begins with rubric validation to verify and make any necessary revisions to the scoring rubrics. The rubric validation process occurs in two phases. During the first phase, CAI content experts work with the analysis team to prepare for the rubric validation meetings. The CAI content experts use the Rubric Evaluation and Verification for Items Scored Electronically (REVISE) system to generate student responses that are scientifically sampled to overrepresent responses most likely to have been mis-scored. Specifically, the sample overrepresents: low-scored responses from otherwise high-scoring students and high scored responses from otherwise low-scoring students. This process allows CAI to identify any potential

scoring concerns before the rubric validation meeting, such as unanticipated (but accurate) responses, equivalent responses that were not originally considered, and responses receiving credit but should not (based on the content and the item rubric). At this point, the rubrics may be adjusted, and responses rescored.

The second phase of rubric validation involves committees of educators in each state or territory. The committees review the response samples generated by CAI to make recommendations to change or to confirm the rubrics of each item. The committee recommendations are then discussed with the state or territory of ownership to resolve any inconsistencies. The rubric is then edited or confirmed based on this resolution.

Figure 4 illustrates the features provided by the REVISE system.

Figure 4. Features of the REVISE Software

After the rubric validation meetings, CAI staff apply the approved revisions to the rubrics, and any items rejected as part of the process are rejected in the ITS. During this process, ITS archives critical information regarding the scoring certification completed during the rubric validation process. This includes any rubric changes made during the scoring decision meetings and the sign-off completed by the senior content expert once the rubric has been changed, rescoring the entire sample, and verifying that the final rubric functioned as intended.

Following rubric validation, all items are subject to statistical checks, and flagged items are presented in data review committees.

2.7.2 Data Review

Following rubric validation, all items are rescored and classical item statistics are computed for the scoring assertions, including item difficulty and item discrimination statistics, testing time, and differential item functioning (DIF) statistics. The states and U.S. territory established standards for the statistics, and any items violating these standards are flagged for a second educator review. Even though the scoring assertions are the basic units of analysis to compute classical item statistics, the business rules to flag items for additional educator review are established at the item level because assertions cannot be reviewed in isolation. A common set of business rules is defined for all the states participating in the field test. The classical item statistics are computed on the data of the students testing in Connecticut, Idaho, New Hampshire, North Dakota, Oregon, Rhode Island, South Dakota, Utah, and West Virginia were combined (states that administered ICCR items and used either an independent field test or operational test).

Section 4 of Volume 1, Field-Test Classical Analysis, describes the statistical flags that designate items for data review. The flags are designed to highlight potential content weaknesses, miskeys, or possible bias issues. Committee members are taught to interpret these flags and are given guidelines for examining the items for content or fairness issues.

For each of the states and participating in the MOU, flagged items owned by the state are reviewed by a data review committee. The composition of the data review committees generally includes content experts from the state's department of education or state educators (in this case, the state educators are science teachers) and are supported by CAI content experts. ICCR field-test items were taken to committee members from several states participating in the MOU. The outcomes are decided by CAI science content leadership while taking the committees' recommendations into consideration.

At the start of each state-owned item data review meeting, CAI staff leads participants in a training session to familiarize them with the item development process, the purpose of the data review committee and the data review process, and the meaning of the various flags. Committee members are taught to interpret the various flags and are given guidelines for examining the items for content or fairness issues. The training includes a group review of item cards, which detail specific item attributes (e.g., grade level and alignment to the science standard, the content and rubric of the item, and various item statistics). A sample of the training materials used for these data review meetings is presented in *Appendix 2-G, Sample Data Review Training Materials*. Participants use an online environment via laptop computers to review the items and interact with them in a manner similar to that of students, and to view the statistics associated with each item.

The items are then reviewed by the participants who are most familiar with the particular gradeband level and the items' content domain. CAI content specialists, who are also well versed in item statistics, facilitate the discussion in each room with CAI psychometricians available to answer questions as they arise. At the end of each meeting day, CAI content specialists meet with the state content specialists to review the committee recommendations and decide whether to accept or reject the item for inclusion in the operational pool. Items that were rejected become eligible for potential changes and may become additional field-test items in future administrations. Table 5 summarizes the data review committee meetings. Details, including the composition of each committee, are presented in *Appendix 2-H*, *Data Review Committee Participant Details*.

State/ Item Bank	Meeting	Number of Committee Members	Item Type	Number of Items Reviewed	Number of Items Rejected
Connecticut	August 2018	29	Cluster	7	5
	_		Stand-Alone	11	6
	August 2019	29	Cluster	14	6
			Stand-Alone	39	11
	August 2021	19	Cluster	8	2
			Stand-Alone	43	10
	August 2022	15	Cluster	5	4
	Ŭ		Stand-Alone	14	2
	September 2023	12	Cluster	11	4
			Stand-Alone	32	17
Hawaii	August 2018	18	Cluster	7	1
			Stand-Alone	25	2
	August 2019	18	Cluster	17	5
			Stand-Alone	20	8
	August 2021 ^a	25	Cluster	6	0
			Stand-Alone	20	8
	August 2022 ^a	12	Cluster	11	2
			Stand-Alone	38	6
	August 2023 ^a	15	Cluster	3	2
1000	h.h. 0040	40	Stand-Alone	23	3
ICCR	July 2018	18	Cluster Stand Alana	33	2
	August 2010b		Stand-Alone	51	6
	August 2019	_	Stand Alona	12	2
		25	Cluster	43	2
	August 2021	20	Stand-Alone	64	<u> </u>
	August 2022a	20	Cluster	12	1
	, luguet EoEE	20	Stand-Alone	56	13
	August 2023 ^a	19	Cluster	12	1
	Ŭ		Stand-Alone	42	8
Idaho	August 2019	10	Cluster	4	3
	_		Stand-Alone	8	3
	August 2021 ^a	25	Cluster	26	1
			Stand-Alone	34	4
	August 2022 ^a	8	Cluster	3	0
			Stand-Alone	1	0
	August 2023 ^a	17	Cluster	2	0
N	0	4	Stand-Alone	3	0
Montana	September 2021	4	Cluster Otanal Alar	3	2
	Contomber 2022	F	Stand-Alone	14 E	2
	September 2022	5		5	<u> </u>
		11	Cluster	12	1
	∣ กนบนจเ 2023"		Ciusiei	۷ ک	

Table 5. Summary of Data Review Committee Meetings

State/ Item Bank	Meeting	Number of Committee Members	Item Type	Number of Items Reviewed	Number of Items Rejected
			Stand-Alone	10	2
Multi-State	August 2018	_	Cluster	2	0
Science			Stand-Alone	7	6
Assessment	August 2019	_	Cluster	2	1
(Rhode Island	-		Stand-Alone	12	3
and Vermont)	August 2021	_	Cluster	4	4
	-		Stand-Alone	14	5
	September 2022	_	Cluster	1	1
			Stand-Alone	10	6
Oregon	September 2018	11	Cluster	28	5
			Stand-Alone	16	1
	August 2019	4	Cluster	1	1
			Stand-Alone	7	6
	August 2022 ^a	8	Cluster	11	2
			Stand-Alone	20	6
			Legacy Stand-Alone	9	4
	August 2023ª	16	Cluster	9	1
			Stand-Alone	3	1
			Legacy Stand-Alone	24	11
Rhode Island	September 2023	—	Cluster	7	2
			Stand-Alone	10	4
South Dakota	September 2021	_	Legacy Stand-Alone	15	0
	September 2022	_	Legacy Stand-Alone	4	1
	September 2023	_	Legacy Stand-Alone	6	2
Utah	August 2018	16	Cluster	40	6
	September 2021	6	Cluster	11	3
	September 2022	13	Cluster	11	6
	September 2023	20	Cluster	6	0
West Virginia	July 2018	4	Cluster	3	1
	0 1 1 0010		Stand-Alone	0	0
	September 2019		Cluster	1	1
	4 4 4 9 9 9 4 9		Stand-Alone	6	5
	August 2021ª	25		1	1
			Stand-Alone	0	2
	August 2022	9	Stand Alana	4	2
		11	Cluster	0	<u> </u>
	August 2025"	11	Stand Alana	2 10	2
Wyoming	October 2019	10	Cluster	6	<u> </u>
wyonning		12		0	Г Г
			Stand-Alone	10	5
	August 2019	10	Cluster	4	3
			Stand-Alone	12	2
	August 2021ª	25	Cluster	3	1
			Stand-Alone	13	3
	August 2022ª	12	Cluster	2	0
	J J		Stand-Alone	17	3
		17	Cluetor	2	0
	August 2020	17	Stand Alana	5	4
			Stand-Alone	5	

Note. MSSA, Rhode Island, and South Dakota-owned items were reviewed by Rhode Island Department of Education and Vermont Agency of Education science content experts, the Rhode Island Department of Education, and the South Dakota Department of Education, respectively.

^aCombined Item Data Review Meetings were conducted for multiple states in 2021, 2022, and 2023 (184 items were reviewed in the combined meeting format for Hawaii, Idaho, West Virginia, Wyoming, and ICCR items in 2021; 181 items were reviewed in the combined meeting format for Hawaii, Idaho, Oregon, West Virginia, Wyoming, and ICCR items in 2022, and 129 items were reviewed in the combined meeting format for Hawaii, Idaho, Oregon, West Virginia, Wyoming, and ICCR items in 2022, and 129 items were reviewed in the combined meeting format for Hawaii, Idaho, Oregon, West Virginia, Wyoming, and ICCR items in 2023). In 2021, 25 committee members took part in the combined Item Data Review Meetings; in 2022, 38 committee members participated in the combined Item Data Review Meetings, and in 2023, 41 committee members participated in the combined Item Data Review Meetings. Items reviewed in the combined meetings are displayed by their respective state or bank of ownership.

^bDuring the summer 2019, ICCR field-test items underwent committee review in Connecticut, Hawaii, and Idaho.

3. SHARED SCIENCE ASSESSMENT ITEM BANK SUMMARY

Tests based on *A Framework for K–12 Science Education* (National Research Council, 2012) adopt a three-dimensional conceptualization of science understanding, including crosscutting concepts (CCCs), science and engineering practices (SEPs), and disciplinary core ideas (DCIs). Accordingly, the new science assessments are composed mostly of item clusters representing a series of interrelated student interactions directed towards describing, explaining, and predicting scientific phenomena. Some stand-alone items are added to increase the coverage of the test without increasing the testing time or testing burden.

CAI has built the Shared Science Assessment Item Bank in partnership with multiple states and one U.S. territory. The science item bank is robust and has been constructed to support multiple statewide science assessments. As described earlier, science items are written to the three-dimensional science standards. The Shared Science Assessment Item Bank comprises ICCR items and items developed for specific states, which are all shared with MOU partner states. These items follow the same specifications, test development processes, and review processes.

In 2018, CAI field-tested more than 540 item clusters and stand-alone items, of which 451 (including items from all sources) were accepted and made available as operational items in 2019. In 2019, 347 item clusters and stand-alone items were field-tested, of which 268 were accepted and made available as operational items in 2020. In 2021, CAI field-tested 545 item clusters and stand-alone items, of which 458 have passed rubric validation and item data review. In 2022, CAI field tested 471 item clusters and stand-alone items, of which 403 have passed rubric validation and item data review. In 2023, CAI field-tested 348 item clusters and stand-alone items, of which 288 have passed rubric validation and item data review.

Each partnered user of the Shared Science Assessment Item Bank selects items that are appropriately aligned and have passed required reviews (as described in Section 2, Item Development Process That Supports Validity of Claims) for use on its statewide assessment. The Shared Science Assessment Item Bank continues to grow as participating states and territory continue to field-test new items. These participating partners collectively share the items and agree to field-test new items each year.

3.1 CURRENT COMPOSITION OF THE SHARED SCIENCE ASSESSMENT ITEM BANK

The Shared Science Assessment Item Bank contains item clusters and stand-alone items. Item clusters represent a series of interrelated student interactions directed toward describing, explaining, and predicting scientific phenomena. Item clusters can consist of several item parts requiring the student to interact with the item in various ways. In addition, shorter items (stand-alone items) are included to increase the coverage of the assessments without also increasing testing time or testing burden.

Within each item (item cluster and stand-alone item), a series of explicit assertions is made about the knowledge and skills that a student has demonstrated based on specific features of the student's responses across multiple interactions. For example, a student may correctly graph data points indicating that they can construct a graph showing the relationship between two variables, but they may make an incorrect inference about the relationship between the two variables, therefore not supporting the assertion that the student can interpret relationships expressed graphically. Table 6 lists and describes the science interaction types. Examples of various interaction types can be found in *Appendix 2-I, Example Item Interactions*.

Interaction Type	Associated Sub-Types	Description
	Multiple-Choice	Traditional multiple-choice interaction allows students to select a single option from a list of possible answer options.
Choice	Multi-Select	Traditional multi-select interaction (checkboxes) allows students to select one or more options from a list of possible answer choices.
	Simple Text Entry	Students type a response in a text box.
Text Entry	Embedded Text Entry	Students type their response in one or more text boxes that are embedded in a section of read-only text.
Text Entry	Natural Language	Students are directed to provide a short, written response.
	Extended-Response	Students are directed to provide a longer, written response in the form of an essay.
Table	Table Match	Interaction allows students to check a box to indicate if the information from a column header matches information from a row header.
	Table Input	Interaction solicits students to complete tabular data.
	Edit Task	Students click a word and replace it with another word that they type to revise a sentence.
Edit Task	Edit Task with Choice	Students click a word or phrase and select the replacement from several options.
	Edit Task Inline Choice	Drop-down menus are placed throughout the text, and students select an option to complete the text.
Hot-Text	Selectable	Selectable hot-text interactions require students to select one or more text elements in the response area.
	Re-orderable	Re-orderable hot-text interactions require students to click and drag hot-text elements into a different order.

Table 6. Science Interaction Types and Descriptions

Interaction Type	Associated Sub-Types	Description
	Drag-from-Palette	Drag-from-Palette hot-text interactions require students to drag elements from a palette into the available blank table cells or "gaps" (text boxes) in the response area.
	Custom	Custom hot-text interactions combine the functionality of the other hot-text interaction sub-types. Students responding to a custom hot-text interaction may need to select text elements, rearrange text elements, and/or drag text elements from a palette to blank table cells or drop targets in the response area.
Equation	N/A	Equation interactions require students to enter a response into input boxes. These boxes may stand alone, or they may be in line with text or embedded in a table. The equation interaction may have an on-screen keypad which may consist of special mathematic characters. Students may also enter their response via a physical keyboard.
	Grid	Grid interactions require students to enter a response by interacting with a grid area in the answer space. The student may be required to draw a line or shape, plot a point, or create a graph. The student may also drag and drop or click on selectable hot-spots.
Grid	Hot-Spot	Hot-spot interaction sub-types facilitate grid interactions with specific hot-spot functionality. These interactions require students to select hot-spot regions in the grid area.
	Graphic Gap Match	Graphic gap match interactions facilitate grid interactions with specific drag-and-drop functionality. These interactions require students to drag image objects from a palette to specified regions (gaps) in the grid area.
Simulation	N/A	Simulation interactions allow students to investigate a phenomenon by selecting variables to get output data. Some simulations are accompanied by animations.

Table 7–Table 11 present the number of items in the Shared Science Assessment Item Bank available for use in the spring 2023 statewide assessments. *Appendix 2-J, Shared Science Assessment Item Bank*, provides the items available within the bank by grade band, performance standards and origin.

 Table 7. Spring 2023 Shared Science Assessment Operational and Field-Test

 Item Bank

Grade Band and Item Type	ICCR Items	Idaho Items	MOU Items [*]	Total Bank Items
Elementary School	174	46	457	677
Cluster	66	23	258	347
Stand-Alone	108	23	199	330
Middle School	188	47	457	692
Cluster	74	23	239	336
Stand-Alone	114	24	218	356
High School	154	42	295	491

Grade Band and Item Type	ICCR Items	ldaho Items	MOU Items [*]	Total Bank Items
Cluster	56	24	127	207
Stand-Alone	98	18	168	284
Total	516	135	1209	1860

*Other MOU states include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming.

Grade Band and Item Type	ICCR Operational Items	ldaho Operational Items	MOU Operational Items⁺	Total Bank Operational Items	
Elementary School	139	41	371	551	
Cluster	49	20	218	287	
Stand-Alone	90	21 153		264	
Middle School	147	43	366	556	
Cluster	53	20	204	277	
Stand-Alone	94	23	162	279	
High School	131	39	235	405	
Cluster	50	22	95	167	
Stand-Alone	81	17	140	238	
Total	417	123	972	1512	

Table 8. Spring 2023 Shared Science Assessment Operational Item Bank

*Other MOU operational item states include Connecticut, Hawaii, Rhode Island, Oregon, Utah, West Virginia, and Wyoming.

Grade Band and Item Type	ICCR Field-Test Items	Idaho Field-Test Items	MOU Field-Test Items [*]	Total Bank Field-Test Items
Elementary School	35	5	86	126
Cluster	17	3	40	60
Stand-Alone	18	2	46	66
Middle School	41	4	91	136
Cluster	21	3	35	59
Stand-Alone	20	1	56	77
High School	23	3	60	86
Cluster	6	2	32	40
Stand-Alone	17	1	28	46
Total	99	12	237	348

Table 9. Spring 2023 Shared Science Assessment Field-Test Item Bank

*Other MOU field-test item states include Connecticut, Hawaii, Montana, Rhode Island, Utah, West Virginia, and Wyoming.

Grade Band	Science Discipline	Item Type	ICCR Items	ldaho Items	MOU Items ^a	Total Bank Items⁵
	Earth and Space	Cluster	23	7	84	114
	Sciences	Stand-Alone	31	8	60	99
Elementary	Life Sciences	Cluster	21	6	75	102
School	Life Sciences	Stand-Alone	37	7	58	102
	Physical	Cluster	22	10	99	131
	Sciences	Stand-Alone	40	8	81	129
Middle	Earth and Space Sciences	Cluster	22	6	60	88
		Stand-Alone	30	7	67	104
	Life Sciences	Cluster	29	6	97	132
School		Stand-Alone	50	8	79	137
	Physical Sciences	Cluster	23	9	77	109
		Stand-Alone	34	8	72	114
	Earth and Space Sciences	Cluster	15	4	29	48
		Stand-Alone	24	4	43	71
High	Life Sciences	Cluster	22	6	64	92
School		Stand-Alone	44	4	73	121
	Physical	Cluster	19	13	34	66
	Sciences	Stand-Alone	30	10	52	92
Total			516	131	1204	1851

Table 10. Spring 2023 Shared Science Assessment Operational and Field-Test
Item Bank by Science Discipline

^aOther MOU states include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming. ^bCount excludes nine MOU items that do not align to the NGSS.
Grade Band	Science Discipline	Disciplinary Core Idea	ICCR Items	ldaho Items	MOU Items ^a	Total Bank Items [∌]
		ESS1	11	3	41	55
	Earth and Space	ESS2	19	8	66	93
	Sciences	ESS3	24	4	37	65
		LS1	22	3	51	76
	Life Sciences	LS2	6	3	27	36
School	Life Sciences	LS3	7	2	20	29
3011001		LS4	23	5	35	63
		PS1	14	6	41	61
	Physical Sciences	PS2	22	4	39	65
	Filysical Sciences	PS3	19	6	62	87
		PS4	7	2	38	47
	Fourth and Oness	ESS1	14	5	35	54
	Earth and Space	ESS2	22	3	44	69
	Ociences	ESS3	16	5	48	69
		LS1	27	5	62	94
Middle School	Life Sciences	LS2	26	2	48	76
	Life Sciences	LS3	6	2	17	25
		LS4	20	5	49	74
		PS1	18	4	47	69
	Dhysical Sciences	PS2	8	6	45	59
	Physical Sciences	PS3	20	4	34	58
		PS4	11	3	23	37
	Forth and Chase	ESS1	14	3	19	36
	Earth and Space	ESS2	12	3	30	45
	OCIENCES	ESS3	13	2	23	38
High School		LS1	19	2	42	63
nigh School	Life Sciences	LS2	21	2	44	67
		LS3	8	2	18	28
		LS4	18	4	33	55
	Physical Sciences	PS1	19	7	30	56

Table 11. Spring 2023 Shared Scienc	e Assessment Operational and Field-	Test Item Bank by Disciplinary Core Idea
-------------------------------------	-------------------------------------	--

Grade Band	Science Discipline	Disciplinary Core Idea	ICCR Items	ldaho Items	MOU Items ^a	Total Bank Items ^b
		PS2	10	6	20	36
		PS3	11	5	23	39
		PS4	9	5	13	27
Total			516	131	1204	1851

^aOther MOU states include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming. ^bCount excludes nine MOU items that do not align to the NGSS.

3.2 STRATEGY FOR ITEM BANK EVALUATION AND REPLENISHMENT

Both CAI and the participating MOU states continue to develop items to replenish and grow the Shared Science Assessment Item Bank. The general strategy for targeting item development gathers information from the following three sources:

- 1. Characteristics of released items to be replaced
- 2. Characteristics of items that are overused
- 3. Tabulations of content coverage and ranges of difficulty to identify gaps in the bank

Before a test goes live, simulations are used to fine-tune the parameters of the algorithm that govern the item selection in an adaptive test design. Among the many reports from the simulator are items that are seen by more than 20% of students. The characteristics of these items are the primary targets for development. Overused items become candidates for release in two years once replacements have been introduced into the operational bank.

4. TEST CONSTRUCTION FOR THE IDAHO STANDARDS ACHIEVEMENT TEST IN SCIENCE

4.1 **TEST DESIGN**

The ISAT in Science was administered online to students in grades 5, 8, and 11 using an adaptive testing design in spring 2023. In an adaptive test, operational items are selected on the fly based on the performance of a student on past items while ensuring the test blueprint is followed for each individual student. An advantage of adaptive testing is that it can provide more precise scores for students with lower and higher proficiencies, in contrast to fixed forms and linear-on-the fly tests (LOFTs) that are typically targeted to provide the best precision for students with medium proficiencies. Also, as opposed to a fixed form and a LOFT, every student has the potential to see a different set of items that adapt to the student's ability, thus offering a better testing experience.

Items are selected by an item-selection algorithm based on the content and information value. At any given point during the test, the content value of an item is determined by its contribution to meeting the blueprint, given the content characteristics of the items that have already been administered. During the test, the content value increases for items that exhibit features that have not met their designated minimum as the end of the test approaches. Conversely, the content value decreases for items with content features that met the minimum. The information value of an item is based on the item information function evaluated at the estimated proficiency. The proficiency estimate is updated throughout the test.

The adaptive item-selection algorithm is the same algorithm CAI uses to deliver English language arts (ELA) and mathematics tests, but with some modifications to make it suitable for using item clusters. Specifically, the proficiencies that are estimated during the test are computed under an item response theory (IRT) model that incorporates cluster effects. In order to avoid over-selection of items with many scoring assertions, the information of an item at an estimated proficiency level

is normalized by the number of assertions in the item (similar to how information is computed for item sets in ELA and mathematics assessments).

A non-segmented test design was used for the ISAT in Science, meaning students received items from different disciplines in a random order. Compared to the use of a segmented design where items are administered by science discipline, the use of a non-segmented test design provides more freedom when selecting items targeting a current best estimate of proficiency in an adaptive test. Embedded field-test items were randomly positioned in the test and randomly distributed across students. Every student received either one item cluster or four stand-alone items as field-test items throughout the test.

4.2 TEST BLUEPRINTS

Test blueprints provide the following guidelines:

- Test length
- Science disciplines to be covered and the acceptable number of items across performance standards within each science discipline and Disciplinary Core Idea (DCI)

The blueprint for science is presented in Table 12 – Table 14.

Grade 5	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
Discipline- Physical Sciences, Standard Total = 17	2	2	4	4	6	6
DCI- Motion and Stability: Forces and Interactions	0	1	0	2	0	3
PS1-3-1: Forces and Motion & Types of Interactions	0	1	0	1	0	1
PS1-3-2: Forces and Motion	0	1	0	1	0	1
PS1-3-3: Types of Interactions	0	1	0	1	0	1
PS1-3-4: Types of Interactions [*]	0	1	0	1	0	1
PS2-5-1: Types of Interactions	0	1	0	1	0	1
DCI- Energy	0	1	0	2	0	3
PS1-4-1: Definitions of Energy	0	1	0	1	0	1
PS1-4-2: Definitions of Energy & Conservation of Energy and Energy Transfer	0	1	0	1	0	1
PS1-4-3: Definitions of Energy & Conservation of Energy and Energy Transfer & Relationship Between Energy and Forces	0	1	0	1	0	1
PS1-4-4: Conservation of Energy and Energy Transfer & Energy in Chemical Processes and Everyday Life & Defining Engineering Problems*	0	1	0	1	0	1
PS3-5-1: Energy in Chemical Processes and Everyday Life & Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
DCI- Waves	0	1	0	2	0	3
PS2-4-1: Wave Properties	0	1	0	1	0	1
PS2-4-2: Electromagnetic Radiation	0	1	0	1	0	1
PS2-4-3: Information Technologies and Instrumentation & Optimizing the Design Solution [*]	0	1	0	1	0	1
DCI- Matter and Its Interactions	0	1	0	2	0	3

Table 12. Science Test Blueprint, Grade 5

Grade 5	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
PS1-5-1: Structure and Properties of Matter	0	1	0	1	0	1
PS1-5-2: Structure and Properties of Matter & Chemical Reactions	0	1	0	1	0	1
PS1-5-3: Structure and Properties of Matter	0	1	0	1	0	1
PS1-5-4: Chemical Reactions	0	1	0	1	0	1
Discipline- Life Sciences, Standard Total = 11	2	2	4	4	6	6
DCI- From Molecules to Organisms: Structure and Function	0	1	0	2	0	3
LS1-4-1: Structure and Function	0	1	0	1	0	1
LS1-4-2: Information Processing	0	1	0	1	0	1
LS1-5-1: Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
DCI- Ecosystems: Interactions, Energy, and Dynamics	0	1	0	2	0	3
LS1-3-1: Social Interactions and Group Behavior	0	1	0	1	0	1
LS2-4-1: Interdependent Relationships in Ecosystems & Cycles of Matter and Energy Transfer in Ecosystems	0	1	0	1	0	1
DCI- Heredity: Inheritance and Variation of Traits	0	1	0	2	0	3
LS2-3-1: Inheritance of Traits & Variation of Traits	0	1	0	1	0	1
LS2-3-2: Inheritance of Traits & Variation of Traits	0	1	0	1	0	1
DCI- Biological Adaptation: Unity and Diversity	0	1	0	2	0	3
LS2-5-1: Evidence of Common Ancestry and Diversity	0	1	0	1	0	1
LS2-5-2: Natural Selection & Biodiversity and Humans	0	1	0	1	0	1
LS2-5-3: Adaptation	0	1	0	1	0	1

Grade 5	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
LS2-5-4: Ecosystem Dynamics, Functioning, and Resilience & Biodiversity and Humans*	0	1	0	1	0	1
Discipline- Earth and Space Sciences, Standard Total = 13	2	2	4	4	6	6
DCI- Earth's Systems	0	1	0	2	0	3
ESS1-3-1: Weather and Climate	0	1	0	1	0	1
ESS1-3-2: Weather and Climate	0	1	0	1	0	1
ESS2-4-1: Earth Materials and Systems & Biogecology	0	1	0	1	0	1
ESS2-4-2: Plate Tectonics and Large-Scale System Interactions	0	1	0	1	0	1
ESS2-5-1: Earth Materials and Systems	0	1	0	1	0	1
ESS2-5-2: The Roles of Water in Earth's Surface Processes	0	1	0	1	0	1
DCI- Earth and Human Activity	0	1	0	2	0	3
ESS2-3-1: Natural Hazards [*]	0	1	0	1	0	1
ESS3-4-2: Natural Hazards & Designing Solutions to Engineering Problems*	0	1	0	1	0	1
ESS3-4-1: Natural Resources	0	1	0	1	0	1
ESS3-5-1: Human Impacts on Earth Systems	0	1	0	1	0	1
DCI- Earth's Place In the Universe	0	1	0	2	0	3
ESS1-4-1: The History of Planet Earth	0	1	0	1	0	1
ESS1-5-1: The Universe and its Stars	0	1	0	1	0	1
ESS1-5-2: Earth and the Solar System	0	1	0	1	0	1
Standard Total = 41	6	6	12	12	18	18

*These standards have an engineering component.

Grade 8	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
Discipline—Physical Sciences, Standard Total = 19	2	2	4	4	6	6
DCI—Matter and Its Interactions	0	1	0	2	0	3
PS1-MS-1: Structure and Properties of Matter & Chemical Reactions	0	1	0	1	0	1
PS1-MS-2: Structure and Properties of Matter	0	1	0	1	0	1
PS1-MS-3: Structure and Properties of Matter & Chemical Reactions	0	1	0	1	0	1
PS1-MS-4: Structure and Properties of Matter & Definitions of Energy	0	1	0	1	0	1
PS1-MS-5: Chemical Reactions	0	1	0	1	0	1
PS1-MS-6: Chemical Reactions & Definitions of Energy & Developing Possible Solutions*	0	1	0	1	0	1
DCI-Motion and Stability: Forces and Interactions	0	1	0	2	0	3
PS2-MS-1: Forces and Motion*	0	1	0	1	0	1
PS2-MS-2: Forces and Motion	0	1	0	1	0	1
PS2-MS-3: Types of Interactions	0	1	0	1	0	1
PS2-MS-4: Types of Interactions	0	1	0	1	0	1
PS2-MS-5: Types of Interactions	0	1	0	1	0	1
DCI—Energy	0	1	0	2	0	3
PS3-MS-1: Definitions of Energy	0	1	0	1	0	1
PS3-MS-2: Definitions of Energy & Relationship Between Energy and Forces	0	1	0	1	0	1
PS3-MS-3: Definitions of Energy & Conservation of Energy and Energy Transfer & Defining and Delimiting an Engineering Problem & Developing Possible Solutions [*]	0	1	0	1	0	1

Table 13. Science Test Blueprint, Grade 8

Grade 8	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
PS3-MS-4: Definitions of Energy & Conservation of Energy and Energy Transfer	0	1	0	1	0	1
PS3-MS-5: Conservation of Energy and Energy Transfer	0	1	0	1	0	1
DCI—Waves	0	1	0	2	0	3
PS4-MS-1: Wave Properties	0	1	0	1	0	1
PS4-MS-2: Wave Properties & Electromagnetic Radiation	0	1	0	1	0	1
PS4-MS-3: Information Technologies and Instrumentation	0	1	0	1	0	1
Discipline—Life Sciences, Standard Total = 20	2	2	4	4	6	6
DCI—From Molecules to Organisms: Structures and Processes	0	1	0	2	0	3
LS1-MS-1: Structure and Function	0	1	0	1	0	1
LS1-MS-2: Structure and Function	0	1	0	1	0	1
LS1-MS-3: Structure and Function	0	1	0	1	0	1
LS1-MS-4: Characteristics of Living Things	0	1	0	1	0	1
LS1-MS-5: Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
LS1-MS-6: Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
DCI—Ecosystems: Interactions, Energy, and Dynamics	0	1	0	2	0	3
LS2-MS-1: Interdependent Relationships in Ecosystems	0	1	0	1	0	1
LS2-MS-2: Interdependent Relationships in Ecosystems	0	1	0	1	0	1
LS2-MS-3: Cycle of Matter and Energy Transfer in Ecosystems	0	1	0	1	0	1

Grade 8	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
LS2-MS-4: Cycle of Matter and Energy Transfer in Ecosystems	0	1	0	1	0	1
LS2-MS-5: Ecosystem Dynamics, Functioning, and Resilience	0	1	0	1	0	1
LS2-MS-6: Ecosystem Dynamics, Functioning, and Resilience & Biodiversity and Humans & Developing Possible Solutions [*]	0	1	0	1	0	1
DCI—Heredity: Inheritance and Variation of Traits	0	1	0	2	0	3
LS3-MS-1: Inheritance of Traits & Variance of Traits	0	1	0	1	0	1
LS3-MS-2: Growth and Development of Organisms & Inheritance of Traits & Variation of Traits	0	1	0	1	0	1
DCI—Biological Evolution: Unity and Diversity	0	1	0	2	0	3
LS4-MS-1: Classification of Organisms	0	1	0	1	0	1
LS4-MS-2: Classification of Organisms	0	1	0	1	0	1
LS4-MS-3: Classification of Organisms	0	1	0	1	0	1
LS4-MS-4: Natural Selection	0	1	0	1	0	1
LS4-MS-5: Natural Selection	0	1	0	1	0	1
LS4-MS-6: Adaptation	0	1	0	1	0	1
Discipline—Earth and Space Sciences, Standard Total = 15	2	2	4	4	6	6
DCI—Earth's Place in the Universe	0	1	0	2	0	3
ESS1-MS-1: The Universe and Its Stars & Earth and the Solar System	0	1	0	1	0	1
ESS1-MS-2: The Universe and Its Stars & Earth and the Solar System	0	1	0	1	0	1
ESS1-MS-3: Earth and the Solar System	0	1	0	1	0	1
ESS1-MS-4: History of Earth	0	1	0	1	0	1
DCI—Earth's Systems	0	1	0	2	0	3

Grade 8	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
ESS2-MS-1: Earth's Materials and Systems	0	1	0	1	0	1
ESS2-MS-2: Earth's Earth's Materials and Systems & The Roles of Water in Earth's Surface Processes	0	1	0	1	0	1
ESS2-MS-3: History of the Planet Earth & Plate Tectonics and Large-Scale System Interactions	0	1	0	1	0	1
ESS2-MS-4: The Roles of Water in Earth's Surface Processes	0	1	0	1	0	1
ESS2-MS-5: The Roles of Water in Earth's Surface Processes & Weather and Climate	0	1	0	1	0	1
ESS2-MS-6: Weather and Climate	0	1	0	1	0	1
DCI—Earth and Human Activity	0	1	0	2	0	3
ESS3-MS-1: Natural Resources	0	1	0	1	0	1
ESS3-MS-2: Natural Hazards	0	1	0	1	0	1
ESS3-MS-3: Human Impacts on Earth Systems*	0	1	0	1	0	1
ESS3-MS-4: Human Impacts on Earth Systems	0	1	0	1	0	1
ESS3-MS-5: Human Impacts on Earth Systems	0	1	0	1	0	1
Total Standards = 54	6	6	12	12	18	18

*These standards have an engineering component.

Grade 11	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
Discipline—Physical Sciences (Chemistry and Physics), Standard Total = 31	2	2	5	5	7	7
DCI—Structure and Properties of Matter & Chemical Reactions (Chemistry)	0	1	0	2	0	3
PSC1-HS-1: Structure and Properties of Matter & Types of Interactions (Chemistry)	0	1	0	1	0	1
PSC1-HS-2: Structure and Properties of Matter & Types of Interactions (Chemistry)	0	1	0	1	0	1
PSC1-HS-3: Structure and Properties of Matter & Types of Interactions (Chemistry)	0	1	0	1	0	1
PSC1-HS-4: Nuclear Processes (Chemistry)	0	1	0	1	0	1
PSC1-HS-5: Structure and Properties of Matter & Types of Interactions (Chemistry)	0	1	0	1	0	1
PSC2-HS-1: Structure and Properties of Matter & Chemical Reactions (Chemistry)	0	1	0	1	0	1
PSC2-HS-2: Structure and Properties of Matter & Chemical Reactions (Chemistry)	0	1	0	1	0	1
PSC2-HS-3: Chemical Reactions (Chemistry)	0	1	0	1	0	1
PSC2-HS-4: Chemical Reactions (Chemistry)	0	1	0	1	0	1
PSC2-HS-5: Chemical Reactions & Optimizing the Design Solution (Chemistry)*	0	1	0	1	0	1
DCI—Energy (Chemistry)	0	1	0	2	0	3
PSC3-HS-1: Electromagnetic Radiation (Chemistry)	0	1	0	1	0	1
PSC3-HS-2: Definitions of Energy & Conservation of Energy and Energy Transfer (Chemistry)	0	1	0	1	0	1
PSC3-HS-3: Definitions of Energy (Chemistry)	0	1	0	1	0	1
PSC3-HS-4: Definitions of Energy & Energy in Chemical Processes (Chemistry)*	0	1	0	1	0	1

Table 14. Science Test Blueprint, Grade 11

Grade 11	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
PSC3-HS-5: Conservation of Energy and Energy Transfer & Energy in Chemical Processes (Chemistry) [*]	0	1	0	1	0	1
DCI—Motion and Stability: Forces and Interactions (Physics)	0	1	0	2	0	3
PSP1-HS-1: Forces and Motion (Physics)	0	1	0	1	0	1
PSP1-HS-2: Forces and Motion (Physics)	0	1	0	1	0	1
PSP1-HS-3: Forces and Motion & Types of Interactions & Defining and Delimiting and Engineering Problem & Optimizing the Design Solution (Physics) [*]	0	1	0	1	0	1
PSP1-HS-4: Types of Interactions (Physics)	0	1	0	1	0	1
PSP1-HS-5: Types of Interactions & Definitions of Energy (Physics)	0	1	0	1	0	1
PSP1-HS-6 : Types of Interactions (Physics)*	0	1	0	1	0	1
DCI—Energy (Physics)	0	1	0	2	0	3
PSP2-HS-1: Definitions of Energy & Conservation of Energy and Energy Transfer (Physics)	0	1	0	1	0	1
PSP2-HS-2: Definitions of Energy (Physics)	0	1	0	1	0	1
PSP2-HS-3: Definitions of Energy & Energy in Chemical Processes & Defining and Delimiting an Engineering Problem (Physics)*	0	1	0	1	0	1
PSP2-HS-4: Conservation of Energy and Energy Transfer & Energy in Chemical Processes (Physics)	0	1	0	1	0	1
PSP2-HS-5: Relationship Between Energy and Forces (Physics)	0	1	0	1	0	1
DCI I—Waves (Physics)	0	1	0	2	0	3
PSP3-HS-1: Wave Properties (Physics)	0	1	0	1	0	1
PSP3-HS-2: Wave Properties (Physics)	0	1	0	1	0	1

Grade 11	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
PSP3-HS-3: Wave Properties & Electromagnetic Radiation (Physics)	0	1	0	1	0	1
PSP3-HS-4: Electromagnetic Radiation (Physics)	0	1	0	1	0	1
PSP3-HS-5: Energy in Chemical Processes & Wave Properties & Electromagnetic Radiation & Information Technologies and Instrumentation (Physics)*	0	1	0	1	0	1
Discipline—Life Sciences, Standard Total = 24	2	2	4	4	6	6
DCI—From Molecules to Organisms: Structures and Processes	0	1	0	2	0	3
LS1-HS-1: Structure and Function	0	1	0	1	0	1
LS1-HS-2: Structure and Function	0	1	0	1	0	1
LS1-HS-3: Structure and Function	0	1	0	1	0	1
LS1-HS-4: Growth and Development of Organisms	0	1	0	1	0	1
LS1-HS-5: Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
LS1-HS-6: Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
LS1-HS-7: Organization for Matter and Energy Flow in Organisms	0	1	0	1	0	1
DCI—Ecosystems: Interactions, Energy, and	0	1	0	2	0	3
Dynamics	•	-	•	_	•	•
Ecosystems	0	1	0	1	0	1
LS2-HS-2: Interdependent Relationships in Ecosystems & Ecosystem Dynamics, Functioning, and Resilience	0	1	0	1	0	1
LS2-HS-3: Cycles of Matter and Energy Transfer in Ecosystems	0	1	0	1	0	1

Grade 11	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
LS2-HS-4: Cycles of Matter and Energy Transfer in Ecosystems	0	1	0	1	0	1
LS2-HS-5: Cycles of Matter and Energy Transfer in Ecosystems	0	1	0	1	0	1
LS2-HS-6: Ecosystem Dynamics, Functioning, and Resilience	0	1	0	1	0	1
LS2-HS-7: Ecosystem Dynamics, Functioning and Resilience & Biodiversity and Humans*	0	1	0	1	0	1
LS2-HS-8: Social Interactions and Group Behavior	0	1	0	1	0	1
DCI—Heredity: Inheritance and Variation of Traits	0	1	0	2	0	3
LS3-HS-1: Structure and Function & Inheritance of Traits	0	1	0	1	0	1
LS3-HS-2: Variation of Traits	0	1	0	1	0	1
LS3-HS-3: Variation of Traits	0	1	0	1	0	1
DCI—Biological Evolution: Unity and Diversity	0	1	0	2	0	3
LS4-HS-1: Evidence of Common Ancestry and Diversity	0	1	0	1	0	1
LS4-HS-2: Natural Selection & Adaptation	0	1	0	1	0	1
LS4-HS-3: Natural Selection & Adaptation	0	1	0	1	0	1
LS4-HS-4: Adaptation	0	1	0	1	0	1
LS4-HS-5: Adaptation	0	1	0	1	0	1
LS4-HS-6: Adaptation & Biodiversity and Humans & Developing Possible Solutions [*]	0	1	0	1	0	1
Discipline—Earth and Space Sciences, Standard Total = 19	2	2	4	4	6	6
DCI—Earth's Place in the Universe	0	1	0	2	0	3
ESS1-HS-1: The Universe and Its Stars & Energy in Chemical Processes and Everyday Life	0	1	0	1	0	1

Grade 11	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
ESS1-HS-2: The Universe and Its Stars & Electromagnetic Radiation	0	1	0	1	0	1
ESS1-HS-3: The Universe and Its Stars	0	1	0	1	0	1
ESS1-HS-4: Earth and the Solar System	0	1	0	1	0	1
ESS1-HS-5: The History of Planet Earth & Plate Tectonics and Large-Scale System Interactions & Nuclear Processes	0	1	0	1	0	1
ESS1-HS-6: The History of Planet Earth & Nuclear Processes	0	1	0	1	0	1
DCI—Earth's Systems	0	1	0	2	0	3
ESS2-HS-1: Earth Materials and Systems & Plate Tectonics and Large-Scale System Interactions	0	1	0	1	0	1
ESS2-HS-2: Earth Materials and Systems & Weather and Climate	0	1	0	1	0	1
ESS2-HS-3: Earth Materials and Systems & Plate Tectonics and Large-Scale System Interactions & Wave Properties	0	1	0	1	0	1
ESS2-HS-4: Earth and the Solar System & Earth Materials and Systems & Weather and Climate	0	1	0	1	0	1
ESS2-HS-5: The Roles of Water in Earth's Surface Processes	0	1	0	1	0	1
ESS2-HS-6: Weather and Climate	0	1	0	1	0	1
ESS2-HS-7: Weather and Climate & Bioecology	0	1	0	1	0	1
DCI—Earth and Human Activity	0	1	0	2	0	3
ESS3-HS-1: Natural Resources & Natural Hazards	0	1	0	1	0	1
ESS3-HS-2: Natural Resources & Developing Possible Solutions [*]	0	1	0	1	0	1
ESS3-HS-3: Human Impacts on Earth Systems	0	1	0	1	0	1
ESS3-HS-4: Human Impacts on Earth Systems & Developing Possible Solutions*	0	1	0	1	0	1

Grade 11	Min Item Clusters	Max Item Clusters	Min Stand-Alone Items	Max Stand-Alone Items	Min Item Clusters + Min Stand-Alone Items	Max Item Clusters + Max Stand-Alone Items
ESS3-HS-5: Human Impacts on Earth Systems	0	1	0	1	0	1
ESS3-HS-6: Weather and Climate & Human Impacts on Earth Systems	0	1	0	1	0	1
Total Standards = 74	6	6	13	13	19	19

*These standards have an engineering component.

The main characteristics of the blueprint were that any performance standards could be tested only once (indicated by the values of 0 and 1 for the minimum and maximum values of the individual standards in Table 12–Table 14). In general, no more than one item cluster or two stand-alone items could be sampled from the same DCI, and no more than three total items could be sampled from the same DCI (as indicated by the minimum and maximum values in the rows representing DCIs).

While tests are not timed, the Idaho SDE published estimated testing times for the ISAT in Science. The 85th percentile of the testing times is presented in Table 15.

Subject Grade		85th Percentile Testing
	5	122.33
Science	8	97.32
	11	80.83

Table 15. ISAT in Science 85th PercentileTesting Times by Grade

4.3 ONLINE TEST CONSTRUCTION

During fall 2022, CAI psychometricians and content experts worked with Idaho SDE content specialists and leadership to build item pools for the spring 2023 administration. The ISAT in Science test construction used a structured test construction plan, explicit blueprints, and active collaborative participation from all parties.

The 2023 ISAT in Science item pools were built by CAI test developers to match items exactly to the detailed test blueprints. Operational items were selected from 10 item banks (ICCR, Connecticut, Hawaii, Idaho, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming) to fulfill the blueprint for each grade. Table 16–Table 20 summarize the 2023 ISAT in Science item pool. *Appendix 2-K, Idaho Standards Achievement Test in Science Item Pool*, provides the 2023 item pool by grade band, achievement standard, and origin. Details of the adaptive testing algorithm by CAI to utilize the science pool are described in *Appendix 2-L, Adaptive Algorithm Design*.

Grade and Item Type	ICCR Items	ldaho Items	MOU Items ^a	Total Pool Items ^b
Grade 5	116	46	166	328
Cluster	41	23	93	157
Stand-Alone	75	23	73	171
Grade 8	134	47	133	314
Cluster	45	23	65	133
Stand-Alone	89	24	68	181
Grade 11	120	42	124	286
Cluster	45	24	63	132
Stand-Alone	75	18	61	154
Total	370	135	423	928

Table 16. Spring 2023 ISAT in Science Operational and Field-Test Item Pool

^aOther MOU state items administered include Connecticut, Hawaii, Montana, MSSA (Rhode Island and Vermont), Oregon, Utah, West Virginia, and Wyoming. ^bThe total count excludes three field-tested items intended for the interim pool.

Grade and Item Type	ICCR Operational Items	ldaho Operational Items	MOU Operational Items [*]	Total Operational Pool Items
Grade 5	115	41	152	308
Cluster	40	20	85	145
Stand-Alone	75	21	67	163
Grade 8	126	43	124	293
Cluster	43	20	65	128
Stand-Alone	83	23	59	165
Grade 11	117	39	110	266
Cluster	45	22	57	124
Stand-Alone	72	17	53	142
Total	358	123	386	867

Table 17. Spring 2023 ISAT in Science Operational Item Pool

*Other MOU state operational items administered include Connecticut, Hawaii, Montana, MSSA (Rhode Island and Vermont), Oregon, Utah, West Virginia, and Wyoming.

Grade and Item Type	Grade and ICCR Field-Test Item Type Items		MOU Field-Test Items ^a	Total Field-Test Pool Items [♭]	
Grade 5	1	5	14	20	
Cluster	1	3	8	12	
Stand-Alone	0	2	6	8	
Grade 8	8	4	9	21	
Cluster	2	3	0	5	
Stand-Alone	6	1	9	16	
Grade 11	3	3	14	20	
Cluster	0	2	6	8	
Stand-Alone	3	1	8	12	
Total	12	12	37	61	

Table 18. Spring 2023 ISAT in Science Field-Test Item Pool

Other MOU state field-test items administered include Connecticut, Hawaii, Montana, MSSA (Rhode Island and Vermont), Oregon, Utah, West Virginia, and Wyoming. ^bThe total count excludes three field-tested items intended for the interim pool.

 Table 19. Spring 2023 ISAT in Science Operational and Field-Test Item Pool by

 Science Discipline

Grade	Science Discipline	Item Type	ICCR Items	ldaho Items	MOU Itemsª	Total Pool Items ^b
	Earth and Space	Cluster	15	7	21	43
	Sciences	Stand-Alone	22	8	21	51
5	Life Sciences	Cluster	10	6	28	44
5	LITE SCIENCES	Stand-Alone	25	7	23	55
	Physical	Cluster	16	10	44	70
	Sciences	Stand-Alone	28	8	29	65
	Earth and Space	Cluster	15	6	21	42
	Sciences	Stand-Alone	24	7	17	48
0	Life Sciences	Cluster	16	8	24	48
0	Life Sciences	Stand-Alone	38	9	25	72
	Physical	Cluster	14	9	20	43
	Sciences	Stand-Alone	27	8	26	61
	Earth and Space	Cluster	11	4	15	30
	Sciences	Stand-Alone	19	4	18	41
44	Life Sciences	Cluster	19	6	30	55
11	Life Sciences	Stand-Alone	36	4	21	61
	Physical	Cluster	15	14	18	47
	Sciences	Stand-Alone	20	10	22	52
Total			370	135	423	928

^{*}Other MOU states items administered include Connecticut, Hawaii, Montana, MSSA (Rhode Island and Vermont), Oregon, Utah, West Virginia, and Wyoming. ^bThe total count excludes three field-tested items intended for the interim pool.

Grade	Science Discipline	Disciplinary Core Idea	ICCR Items	ldaho Items	MOU Items ^a	Total Pool Items ^b
	Earth and	ESS1	10	3	11	24
	Space	ESS1/2	11	8	22	41
	Sciences	ESS2/3	16	4	9	29
		LS1	13	3	18	34
	Life Sciences	LS1/2	5	3	13	21
5	Life Sciences	LS2-3	5	2	8	15
		LS2-5	12	5	12	29
		PS1	11	6	13	30
	Physical	PS1/2	13	4	16	33
	Sciences	PS1/3	16	6	27	49
		PS2	4	2	17	23
	Earth and	ESS1	12	5	9	26
	Space	ESS2	15	3	17	35
	Sciences	ESS3	12	5	12	29
	Life Sciences	LS1	9	5	11	25
		LS2	24	2	17	43
8		LS3	5	2	6	13
		LS4	16	5	15	36
		PS1	10	4	15	29
	Physical	PS2	6	6	15	27
	Sciences	PS3	17	4	10	31
		PS4	8	3	6	17
	Earth and	ESS1	12	3	12	27
	Space	ESS2	7	3	8	18
	Sciences	ESS3	11	2	13	26
11		LS1	17	2	21	40
		LS2	16	2	12	30
	Life Sciences	LS3	7	2	5	14
		LS4	15	4	13	32

Table 20. Spring 2023 ISAT in Sc	cience Operational and Field-Test Item I	Pool by Disciplinary Core Idea
----------------------------------	--	--------------------------------

Grade	Science Discipline	Disciplinary Core Idea	ICCR Items	Idaho Items	MOU Items ^a	Total Pool Items ^b
		PSC1/2	16	10	14	40
	Dhuningl	PSC3	3	2	5	10
	Physical	PSP1	8	4	9	21
	Sciences	PSP2	2	4	5	11
		PSP3	6	4	7	17
Total			370	135	423	928

*Other MOU state items administered include Connecticut, Hawaii, Rhode Island, Oregon, Utah, West Virginia, and Wyoming. ^bThe total count excludes three field-tested items intended for the interim pool.

More information about *p*-values, biserial correlations, and item response theory (IRT) parameters can be found in Volume 1, Annual Technical Report. The details on calibration, equating, and scoring of the ISAT in Science can also be found in Volume 1.

4.4 PAPER-PENCIL ACCOMMODATION FORM CONSTRUCTION

Student scores should not depend on the mode of administration or type of test form. Because the ISAT in Science was primarily administered in an online test delivery system in spring 2023, only two students in grade 5 took the paper-pencil form, no students took it in grade 8, and two in grade 11 (all in English) while no student took the Braille forms in the paper mode in any grades. Scores obtained via alternate modes of administration must be established as comparable to scores obtained through online testing. This section outlines the overall test development plans that ensured the comparability of online and paper-pencil tests.

To build paper-pencil forms, content specialists began with the online pool and removed any items that could not be rendered on paper. Next, content specialists constructed fixed forms adhering to the test blueprint. All overall and discipline-level (reporting category) blueprint requirements were met.

5. SIMULATION SUMMARY REPORT

This section describes the results of the simulated test administrations used to configure and evaluate the adequacy of the adaptive algorithm, which was used to administer the 2022–2023 ISAT in Science for grades 5, 8, and 11. Simulations were conducted to configure the settings of the algorithm and to evaluate whether individual tests adhered to the test blueprint.

Some important settings included "Select Candidate Set 1" (cset1) and "Select Candidate Set 2" (cset2), which represent subsets of the item pool that were eligible for item selection. Refer to *Appendix 2-L, Adaptive Algorithm Design*, for more details of the current item selection algorithm. In spring 2022, cset1 and cset2 values were set to 10 and 1. Psychometricians reviewed the simulation results and configured settings based on some key diagnostics, including the following:

- **Match-to-Test Blueprint.** This diagnostic determines whether the tests have the correct number of test items overall and the appropriate proportion by content categories at each level of the content hierarchy, as specified in the test blueprints for every science grade.
- Item Exposure Rate. This diagnostic evaluates the utility of item pools and identifies overexposed and underexposed items.
- **Precision.** This diagnostic determines whether the size of the standard error of measurement is within the acceptable range and whether estimates of student ability have any possible bias.

These diagnostics are interrelated. For example, if the test pool for a particular content category is limited (i.e., there are only a few test items available), achieving a 100% match to the blueprint for this content level will lead to a high item exposure rate, which means that a large number of students are sharing items. The software system that performs the simulation allows adjustments

to the setting parameters in order to attain the best possible balance among these diagnostics. The simulation involves an iterative process that reviews initial results, adjusts these system parameters, runs new simulations, reviews the new results, and repeats the exercise until an optimal balance is achieved. The final setting would then be applied for the operational tests.

5.1 FACTORS AFFECTING SIMULATION RESULTS

There are several factors that may influence simulation results for an adaptive test administration. These factors include the following:

- The proportional relationship between the pool and the constraints to be met. Proportionally distributed pools tend to make better use of the pool (i.e., more uniform item exposure) and make it easier to meet blueprint and other constraints. For example, if the specifications call for at least one item cluster per Disciplinary Core Idea (DCI), but the pool has no item cluster for some DCIs, it may be impossible to meet this constraint.
- *The correlational structure between constraints.* It is easier to satisfy a constraint if there are instances of the constraint at all levels of another constraint. For example, if stand-alone items within a discipline are associated only with a specific DCI, it may be difficult to meet both the desired distribution of content and the desired distribution of item type.
- *Whether or not there is a strict maximum on a given constraint.* This means that the requirement must be met exactly in each test administration.

5.2 **Results of Simulated Test Administrations: English**

This section presents the simulation results for the English online tests, which is the test taken by almost all students (>99%). Simulations were evaluated for all content areas using 5,000 simulated cases per grade.

5.2.1 Summary of Blueprint Match

The simulation results showed no blueprint violations at all content levels for all three grades.

5.2.2 Item Exposure

The simulator output also reports the degree to which the constraints set forth in the blueprints may yield greater exposure of items to students. This is reported by examining the percentage of test administrations in which an item appears. For instance, in a fixed paper-pencil form, 100% of the items appear on 100% of the test administrations because every test taker takes the same form. In an adaptive test or a linear-on-the-fly (LOFT) test with a sufficiently large item pool, it is expected that most of the items would appear on a relatively small percentage of the test administrations.

When this condition holds, it suggests that test administrations between students are more or less unique. Therefore, the item exposure rate was calculated for each item by dividing the total number of test administrations in which an item appears by the total number of tests administered. Then the distribution of the item exposure rate (r) is reported in eight bins. The bins are r = 0% (unused),

 $0\% < r \le 1\%$, $1\% < r \le 5\%$, $5\% < r \le 20\%$, $20\% < r \le 40\%$, $40\% < r \le 60\%$, $60\% < r \le 80\%$, and $80\% < r \le 100\%$. If global item exposure is minimal, it is expected that the largest proportion of items would appear in the bins of $0\% < r \le 20\%$, which is an indication that most of the items appear on a very small percentage of the test forms.

Table 24 presents the percentage of items that fell into each exposure bin for all grades. Most test items were administered in 1%-20% of the test administrations. No item had an exposure rate of 0%, and the minimum exposure rate was 0.97% in grade 5. Six items in grade 11 had an exposure rate higher than 40% because of the limitation of the current pool for some content categories.

Grade	Total Items	0%	(0,1]%	(1,5]%	(5,20]%	(20,40]%	(40,60]%	(60,80]%	(80,100]%
5	308	0	4.87	48.38	45.78	0.97	0	0	0
8	293	0	22.87	36.86	35.15	5.12	0	0	0
11	266	0	24.44	39.47	25.94	7.89	2.26	0	0

Table 21. Item Exposure Rates by Grade: Percentage of Items by Exposure Rate,Across All English Online Simulation Sessions

5.2.3 Precision

Each simulated record includes a true score and an ability estimate based on the adaptive test administration. The correlations between the true score and estimated ability for grades 5, 8, and 11 were .948, .953, and .956, respectively. These correlations were fairly high, indicating that the adaptive test administrations reliably estimated student ability.

The mean bias, which is the average of the biases of the estimated abilities across all students, was .016, .001, and -.003 for grades 5, 8, and 11, respectively. In all cases, the mean bias of the estimated abilities was very small, providing further evidence that the true score was adequately recovered in the observed score.

Table 22 shows the mean standard errors of the ability estimate across all simulated test administrations and the standard error at the 5th, 25th, 75th, and 95th percentiles of the ability distribution. For all English tests, the standard error was lowest at the low end of the ability spectrum, indicating a greater precision of measurement of lower performing students. Conversely, the standard error was relatively high for higher ability students, exceeding 0.390 in grade 5.

Table 22. Standard Errors of Ability Estimates, by Grade, AcrossAll English Online Simulation Sessions

Grade	Overall	5th	25th	75th	95th
	Mean	Percentile	Percentile	Percentile	Percentile
5	0.345	0.309	0.328	0.357	0.391

Grade	Grade Overall 5 Mean Perce		25th Percentile	75th Percentile	95th Percentile
8	0.317	0.286	0.301	0.330	0.362
11	0.309	0.278	0.293	0.317	0.354

5.3 **RESULTS OF SIMULATED TEST ADMINISTRATIONS: SPANISH**

This section presents the simulation results for the Spanish tests. The Spanish item pool comprised a subset of ICCR items and some MOU items that had Spanish translations available. Table 23 presents the number of items available for the Spanish tests in spring 2023.

Grade	Item Type	Number of Items
5	Cluster	50
5	Stand-Alone	79
0	Cluster	49
o	Stand-Alone	74
44	Cluster	66
	Stand-Alone	79
Total	397	

Table 23. Spring 2023 Spanish Operational Item Pool

Simulations were evaluated for all content areas using 1,000 simulated cases per grade.

5.3.1 Summary of Blueprint Match

The simulation results showed no blueprint violations at all content levels for all three grades.

5.3.2 Item Exposure

Table 24 presents the percentage of items that fell into each exposure bin for all grades. Most items were administered in less than 20% of the test administrations. Some items had an exposure rate more than 80% in grade 11 because of the limited Spanish item pool. Only those items were available to satisfy the blueprint constraints.

Table 24. Item Exposure Rates by Grade: Percentage of Items by Exposure Rate,Across All Spanish Simulation Sessions

Grade	Total Items	0%	(0,1]%	(1,5]%	(5,20]%	(20,40]%	(40,60]%	(60,80]%	(80,100]%
5	129	0	0	5.43	77.52	14.73	2.33	0	0
8	123	0	0	30.08	45.53	16.26	8.13	0	0

Grade	Total Items	0%	(0,1]%	(1,5]%	(5,20]%	(20,40]%	(40,60]%	(60,80]%	(80,100]%
11	145	0	17.93	28.28	29.66	16.55	5.52	1.38	0.69

5.3.3 Precision

For the Spanish tests, the correlations between the true score and estimated ability for grades 5, 8, and 11 were .952, .951, and .956, respectively. These correlations were fairly high, indicating that the adaptive test administrations reliably estimated student ability.

The mean bias, which is the average of the biases of the estimated abilities across all students, was -.000, .007, and -.015 for grades 5, 8, and 11, respectively. In all cases, the mean bias of the estimated abilities was very small, providing further evidence that the true score was adequately recovered in the observed score.

Table 25 shows the mean standard errors of the ability estimate across all simulated test administrations and the standard error at the 5th, 25th, 75th, and 95th percentiles of the ability distribution. For all English tests, the standard error was lowest at the low end of the ability spectrum, indicating a greater precision of measurement of lower performing students. Conversely, the standard error was relatively high for higher ability students, exceeding 0.390 in grade 5.

Grade	Grade Overall Mean		25th Percentile	75th Percentile	95th Percentile	
5	0.343	0.311	0.327	0.352	0.390	
8	0.332	0.304	0.318	0.339	0.368	
11	0.319	0.285	0.302	0.327	0.368	

Table 25. Standard Errors of Ability Estimates, by Grade, AcrossAll Spanish Online Simulation Sessions

6. OPERATIONAL TEST ADMINISTRATION SUMMARY REPORT

This section presents the blueprint match reports and item exposure rates for the spring 2023 operational test administrations.

6.1 **BLUEPRINT MATCH**

Table 26 presents the percentages of the spring 2023 tests that aligned with the blueprint requirements. Across all grades, every English and Spanish test administered met the blueprint specifications with a 100% match at all content levels.

Grade Content Level Minitens Matterns Meeting BP 1 2 -1 -2 English 5 Discipline 6 6 100 -	Grada	Contont Loval	Minitomo	Maxitama	% of Cases	% of Cases Violating BP			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Graue	Content Level	winnterns	Maxilems	Meeting BP	1	2	-1	-2
5 Discipline 6 6 100 - <t< th=""><th></th><th></th><th></th><th>English</th><th></th><th></th><th></th><th></th><th></th></t<>				English					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	Discipline	6	6	100	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Discipline–Cluster	2	2	100	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Discipline–Stand-alone	4	4	100	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DCI	0	3	100	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DCI–Cluster	0	1	100	-	-	-	-
PE 0 1 100 -		DCI–Stand-alone	0	2	100	-	-	-	-
8 Discipline 6 6 100 - <t< td=""><td></td><td>PE</td><td>0</td><td>1</td><td>100</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>		PE	0	1	100	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Discipline	6	6	100	-	-	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Discipline–Cluster	2	2	100	-	-	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Discipline–Stand-alone	4	4	100	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DCI	0	3	100	-	-	-	-
DCI-Stand-alone 0 2 100 -		DCI–Cluster	0	1	100	-	-	-	-
PE 0 1 100 -		DCI-Stand-alone	0	2	100	-	-	-	-
11 Discipline (Physical Science) 7 7 100 - <		PE	0	1	100	-	-	-	-
Discipline (Physical Science) 7 7 100 - <t< td=""><td>11</td><td>Discipline (Physical</td><td></td><td>_</td><td>100</td><td></td><td></td><td></td><td></td></t<>	11	Discipline (Physical		_	100				
Discipline (Physical Science)-Cluster 2 2 100 -		Science)	7	7	100	-	-	-	-
Science)-Cluster22100Discipline (Physical Science)-Stand-alone55100Discipline (Life Science/Earth and Discipline (Life Science/Earth and Space Science)-66100Discipline (Life Science/Earth and Space Science)-22100Discipline (Life Science/Earth and Space Science)-22100Discipline (Life 		Discipline (Physical	2	2	100				
Discipline (Physical Science)-Stand-alone55100Discipline (Life Science/Earth and Space Science)66100Discipline (Life Science/Earth and Space Science)22100Discipline (Life Science/Earth and Space Science)22100Discipline (Life Science/Earth and Space Science)44100Discipline (Life Science/Earth and Space Science)44100Discipline (Life Science/Earth and Space Science)44100DCI03100DCI-Cluster01100DCI-Stand-alone02100PE01100		Science)–Cluster	Z	2	100	-	-	-	-
Science)-Stand-alone00100Discipline (Life Science/Earth and Space Science)66100Discipline (Life Science/Earth and Space Science)- Cluster22100Discipline (Life Science/Earth and Space Science)- Cluster22100Discipline (Life Science/Earth and Space Science)- Stand-alone44100DCI DCI-Cluster03100DCI-Cluster DCI-Stand-alone02100PE01100		Discipline (Physical	5	5	100	_	-	-	_
Discipline (Life Science/Earth and 6 6 100 Space Science) Discipline (Life Science/Earth and Space Science)- Cluster Discipline (Life Science/Earth and Space Science)- Stand-alone DCI 0 3 100 DCI-Cluster 0 1 100 DCI-Stand-alone 0 2 100 PE 0 1 100		Science)–Stand-alone	Ũ	Ű	100				
Science/Earth and Space Science)66100Discipline (Life Science/Earth and Space Science)- Cluster22100Discipline (Life Science/Earth and Space Science)- Stand-alone44100DCI DCI-Cluster03100DCI-Cluster DCI-Stand-alone02100PE01100		Discipline (Life	0		400				
Space Science)Discipline (Life Space Science)- ClusterDiscipline (Life Science/Earth and Space Science)- Stand-alone22100DIScipline (Life Space Science)- 		Science/Earth and	6	6	100	-	-	-	-
Discipline (Life Space Science)- Cluster22100Discipline (Life Science/Earth and Space Science)- Stand-alone44100DCI03100DCI-Cluster01100DCI-Stand-alone02100DCI-Stand-alone01100DCI-Stand-alone01100PE01100		Discipling (Life							
Space Science) 2 2 100 -		Science/Earth and							
ClusterDiscipline (Life Science/Earth and Space Science)- Stand-alone44100DCI03100DCI-Cluster01100DCI-Stand-alone02100PE01100		Space Science)	2	2	100	-	-	-	-
Discipline (Life Science/Earth and Space Science)- Stand-alone44100DCI03100DCI-Cluster01100DCI-Stand-alone02100PE01100		Cluster							
Science/Earth and Space Science)- Stand-alone 4 4 100 -		Discipline (Life							
Space Science)- 4 4 100 -		Science/Earth and	4	4	100				
Stand-alone DCI 0 3 100 -		Space Science)–	4	4	100	-	-	-	-
DCI 0 3 100 - <td></td> <td>Stand-alone</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Stand-alone							
DCI-Cluster 0 1 100 - <		DCI	0	3	100	-	-	-	-
DCI-Stand-alone 0 2 100 -		DCI–Cluster	0	1	100	-	-	-	-
PE 0 1 100 <u>-</u>		DCI-Stand-alone	0	2	100	-	-	-	-
		PE	0	1	100	-	-	-	-

Grade	Content Level	MinItems	MaxItems	% of Cases Meeting BP	% of Cases Violating B		Violatin	g BP
			Spanish					
5	Discipline	6	6	100	-	-	-	-
	Discipline-Cluster	2	2	100	-	-	-	-
	Discipline–Stand-alone	4	4	100	-	-	-	-
	DCI	0	3	100	-	-	-	-
	DCI–Cluster	0	1	100	-	-	-	-
	DCI-Stand-alone	0	2	100	-	-	-	-
	PE	0	1	100	-	-	-	-
8	Discipline	6	6	100	-	-	-	-
	Discipline–Cluster	2	2	100	-	-	-	-
	Discipline–Stand-alone	4	4	100	-	-	-	-
	DCI	0	3	100	-	-	-	-
	DCI–Cluster	0	1	100	-	-	-	-
	DCI-Stand-alone	0	2	100	-	-	-	-
	PE	0	1	100	-	-	-	-
11	Discipline (Physical Science)	7	7	100	-	-	-	-
	Discipline (Physical Science)–Cluster	2	2	100	-	-	-	-
	Discipline (Physical Science)–Stand-alone	5	5	100	-	-	-	-
	Discipline (Life Science/Earth and Space Science)	6	6	100	-	-	-	-
	Discipline (Life Science/Earth and Space Science)– Cluster	2	2	100	-	-	-	-
	Discipline (Life Science/Earth and Space Science)– Stand-alone	4	4	100	-	-	-	-
	DCI	0	3	100	-	-	-	-
	DCI–Cluster	0	1	100	-	-	-	-
	DCI–Stand-alone	0	2	100	-	-	-	-
	PE	0	1	100	-	-	-	-

6.2 **ITEM EXPOSURE**

Table 27 presents the item exposure rates for the spring 2023 test administration. The exposure rates were very similar to the simulation results described in Section 5.2.2, Item Exposure, most items (95% or more) were administered in 0–60% of the English test administrations. The item exposure rate for field-test items ranged from 6.80%–11.50% for all three grades. For the Spanish tests, more items had high exposure rates compared to the English tests because of a smaller item pool. Also, the operational exposure rates were slightly different from the simulation results because of small population sizes in all three grades. As a result, some items were not exposed at all. In spring 2023, fewer than 100 students took the Spanish test in each grade.

Grade	Total Items	0%	(0,1]%	(1,5]%	(5,20]%	(20,40]%	(40,60]%	(60,80]%	(80,100]%
	English								
5	308	0	6.49	45.45	47.08	0.97	0	0	0
8	293	0	31.06	24.57	37.88	6.48	0	0	0
11	266	0	35.34	28.20	25.94	7.52	2.63	0.38	0
				Sp	banish				
5	129	3.10	0	27.91	51.16	10.85	5.43	1.55	0
8	123	13.82	0	39.02	26.02	8.13	4.07	4.88	4.07
11	145	33.10	0	26.90	22.07	6.21	4.14	4.83	2.76

Table 27. Item Exposure Rates by Grade: Percentage of Items by Exposure Rate,Across All Spring 2023 Test Administrations

7. **References**

- Council of Chief State School Officers (CCSSO). (2015). Science Assessment Item Collaborative (SAIC) Assessment Framework for the Next Generation Science Standards. Washington, DC: Council of Chief State School Officers. Retrieved from https://ccsso.org/sites/default/files/2017-12/SAICAssessmentFramework_FINAL.pdf.
- Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence-centered design for educational testing. *Educational Measurement: Issues and Practice*, 25(4), 6–20.
- National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

Appendix 2-A

Item Writer Training Materials

Exhibit A-1. LABS Guidelines

LABS Guidelines

1. Stereotyping

Testing materials should not present persons stereotyped according to the following characteristics:

- Age
- Disability
- Gender
- Race/Ethnicity
- Sexual orientation

2. SENSITIVE OR CONTROVERSIAL SUBJECTS

Controversial or potentially distressing subjects should be avoided or treated sensitively. For example, a passage discussing the historical importance of a battle is acceptable whereas a graphic description of a battle would not be. Controversial subjects include:

- Death and Disease
- Gambling*
- Politics (Current)
- Race relations
- Religion
- Sexuality
- Superstition
- War

*References to gambling should be avoided in mathematics items related to probability.

3. Advice

Testing materials should not advocate specific lifestyles or behaviors except in the most general or universally agreed-upon ways. For example, a recipe for a healthful fruit snack is acceptable but a passage recommending a specific diet is not. The following categories of advice should be avoided:

- Religion
- Sexual preference
- Exercise
- Diet

4. DANGEROUS ACTIVITY

Tests should not contain content that portrays people engaged in or explains how to engage in dangerous activities. Examples of dangerous activities include:

- Deep-sea diving
- Stunts
- Parachuting
- Smoking
- Drinking

5. POPULATION DIVERSITY AND ETHNOCENTRISM

Testing materials should:

- Reflect the diversity of the testing population
- Use stimulus materials (such as works of literature) produced by members of minority communities
- Use personal names from different ethnic origin communities
- Use pictures of people from different ethnic origin communities
- Avoid *ethnocentrism*, or the attitude that all people should share a particular group's language, beliefs, culture, or religion

6. DIFFERENTIAL FAMILIARITY AND ELITISM

Specialized concepts and terminology extraneous to the core content of test questions should be avoided. This caveat applies to terminology from the fields of:
- Construction
- Finance
- Sports
- Law
- Machinery
- Military topics
- Politics
- Science
- Technology
- Agriculture

7. LANGUAGE USE

Language should be as inclusive as possible.

- Avoid masculine-coded words like mankind, manmade, and the generic "he"
- Use equal pairs such as husband and wife rather than man and wife

8. LANGUAGE ACCESSIBILITY

The grammar and vocabulary should be clear, concise, and appropriate for the intended grade level. The following should be avoided or used with care:

- Passive constructions
- Idioms
- Multiple subordinate clauses
- Pronouns with unclear antecedents
- Multiple-meaning words
- Non-standard grammar
- Dialect
- Jargon

9. ILLUSTRATIONS AND GRAPHICS

Illustrations and graphics should embody all of the previously referenced LABS Guidelines.

Exhibit A-2. LABS Checklist

STEREOTYPING CONSIDERATIONS

- □ Does the material negatively represent, or stereotype people based on gender or sexual preference?
- □ Does the material portray one or more people with disabilities in a negative or stereotypical manner?
- □ Does the material portray one or more religious groups as aggressive or violent?
- □ Does the material romanticize or demean people based on socioeconomic status?
- □ Does the material portray one or more ethnic groups or cultures participating in certain stereotypical activities or occupations?
- □ Does the material portray one or more age groups in a negative or stereotypical manner?

SENSITIVE/CONTROVERSIAL MATERIAL CONSIDERATIONS

- □ Does the material require a student to take a position that challenges authority?
- □ Does the material present war or violence in an overly graphic manner?
- □ Does the material present sensitive or highly controversial subjects, such as death, war, abortion, euthanasia, or natural disasters, except where they are needed to meet State Content Standards?
- □ Does the material require test takers to disclose values that they would rather hold confidential?
- □ Does the material present sexual innuendoes?
- □ Does the material trivialize significant or tragic human experiences?
- □ Does the material require the parent, teacher, or test taker to support a position that is contrary to their religious beliefs?

ADVICE CONSIDERATIONS

□ Does the material contain advice pertaining to health and well-being about which there is not a universal agreement?

POPULATION DIVERSITY

- \Box Is the material written by members of diverse groups?
- □ Does the material reflect the experiences of diverse groups?
- □ Does the material portray people in positive nontraditional roles?
- □ Does test material represent the racial and ethnic composition of the testing population?
- \Box Does the material reflect ethnocentrism?
- □ Does the material refer to population subgroups accurately?
- □ Does test material reflect diversity through the use of names, cultural references, pictures, and roles?

DIFFERENTIAL FAMILIARITY/ELITISM

- □ Does the material contain phrases, concepts, and beliefs that are irrelevant to testing domain and are likely to be more familiar to specific groups that others?
- □ Does the material require knowledge of individuals, events, or groups that is not familiar to all groups of students?
- □ Does the material suggest that affluence is related to merit or intelligence?
- □ Does the material suggest that poverty is related to increased negative behaviors in society?
- □ Does the material use language, content, or context that is offensive to people of a particular economic status?
- □ Does success with the material assume that the test taker has experience with a certain type of family structure?
- □ Does the material favor one socioeconomic group over another?
- \Box Does the material assume values not shared by all test takers?

LINGUISTIC FEATURES/LANGUAGE ACCESSIBILITY/GRAPHICS

- □ Is grammar and vocabulary used in the items clear, concise, and appropriate for the intended grade level?
- □ Are passages at a difficulty level that is appropriate for the intended grade level?

□ Do the illustrations and graphics embody all of the previously referenced LABS Guidelines?

OTHER QUESTIONS TO CONSIDER

- □ Does the material favor one age group over others except in a context where experience or maturation is relevant?
- □ Does the material use language, content, or context that is not accessible to one or more of the age groups tested?
- □ Does the material contain language or content that contradicts values held by a certain culture?
- □ Does the material favor one racial or ethnic group over others?
- □ Does the material degrade people based on physical appearance or any physical, cognitive, or emotional challenge?
- □ Does the material focus only on a person's disability rather than portraying the whole person?
- $\hfill\square$ Does the material favor one religion and/or demean others?

Exhibit A-3. An Overview of Interaction Types

he hawksbill sea baby turtles hatch urtles making it to	turtle builds nests on Hawaiian beaches. Female turtles lay their eggs in the nests. About two months later, the and crawl across the beaches to the ocean. Over the years, scientists have noticed a drop in the number of baby the ocean.
Select the three o	bservations that could explain the drop in the turtle population.
Adult turtles g	jet caught in nets.
Baby turtles of	rawl quickly from the nests.
Food left on t	ne beach attracts predators of the turtles.
The turtles m	stake bright lights for the moon.
Turtles eat pla	astic floating in the ocean.

			=
Students use a la and night, to mod	arge yellow ball and a small green ball del the length of a year, and to explain	I to model the sun and Earth. They use the cause of the seasons.	e the balls to explain the cause of day
Select each box	to identify which movements of the b	alls are needed to explain each phenor	nenon.
You can select	more than one box for each stateme	nt.	
ſ			
	Y	۲	
	Large yellow ball is stationary, while small green ball spins.	Large yellow ball is stationary, while small green ball is tilted.	Large yellow ball is stationary, while small green ball moves around it.
The cause of day and night			
The length of a year			
The cause of			

		=
Click on each blank box and s	elect the words or phrases to con	nplete the sentence describing Earth's
movement in space.		
Earth is tilted on its	and revolves around	. This movement takes one
Click on each blank box and s movement in space.	elect the words or phrases to con	nplete the sentence describing Earth's
Earth is tilted on its	and revolves around	. This movement takes one
and causes	the m	ioon

(in ange	Sable) Lhan	ipie
			=
A list of natural events is shown.			
Click and drag the natural events to reshape Earth's surface.	classify each natural ev	ent as either a fast or slow proc	cess that could shape and
	Fast Process	Slow Process	
1. A glacier melts, depositing sedir	nent.		
2. A mountain side collapses, caus	sing a landslide.		
3. A tsunami pushes sediment inla	nd.		
4. An earthquake causes a crack a	along a road.		
5. Waves carve an arch in a sea cl	iff.		
6			

Directions: Read the question and enter your answer in the b You are investigating the density of two samples of liquids.	юх.												
40 40	F)(•					•			•)	
30 30 20 20	1	2	3	+	-	×÷	1	2	3	+	-	×	÷
1010	4	5	6	<	=	>	4	5	6	a]		
	7	8	9	8			7	8	9	m]		
How much more liquid, in milliliters, is in Sample B than in Sample .	A? 0	1	8		Į.		0].	<u>-</u>	v]		
Use the keypad to type your answer in the space provided. Millilitars										t]		

Enter numbers 1–4 into the table to sho 4 for the change that occurred last.	w the order in which the changes occurred. Use 1 for the change that occurred first and use
Images Order	

Grid Interaction (GI Click up/Add Arrow) Example

Students investigate how the direction of light affects plant growth. They grow three plants in individual cardboard boxes using light from lamps. The picture shows the growth of Plant 1 with light coming from directly above the plant.

The students want to set up Plant 2 and Plant 3 with a light source to complete the investigation.

- A. Click on one blank circle for Plant 2 and one blank circle for Plant 3 to show the direction of the light source for each plant to complete the investigation.
- B. Use the Add Arrow button to draw an arrow showing the predicted growth of Plant 2 and Plant 3 based on the light source on each plant.
- Draw only one arrow for Plant 2.
 Draw only one arrow for Plant 3.
- Draw only one arrow for Plant 3
 There may be more than one
- correct answer.

	<u> </u>		T	
12 Students are studying different kinds of plants and the conditions that they move in. They have planted four kinds of young plants. Design and run an experiment that will show the effects of different amount of Vater (Little ♥ Amount of Light (Direct Sun ♥) Start	 13 Which of the plants would grow <i>best</i> in a desert environment? Agave Fern Moss Rose 14 Which two kinds of plants could grow in the same environment bate Agave and fern Fern and moss Moss and rose Rose and agave 15 	ed on the data from th	e experiment?	
Amount of Water Amount of Light Agave Moss Rose Pern	A student records some notes in a notebook during the experiment inferences.	t. Some of the notes a	re observations and so	me are
	Select a box to identify whether each note is an observation or an	Observation	Informas	
	Agave is a desert plant.			
	No type of fern can survive in direct sun.			
	The rose did not grow taller in the shade.			

	Circuit Component Light Bulb
16 Students conducted a variety of experiments to understand how electricity flows to create light. Design and run experiments to identify the effect of Mystery Component 4 on the other circuit components.	Circuit Component Observations

Selected Response (SR) Interactions

Selected Response interactions provide response options and the student selects the response(s).

SR Interaction Type	Task Demands that can be Assessed
Multiple Choice (MC)	Identify, Choose, Select, Label
Multi Select (MS)	Identify, Choose, Select, Label
Table Match (MI)	Classify, Categorize, Organize, Rank, Sort, Sequence
Editing Task Choice (ETC)	Classify, Categorize, Organize, Sort, Sequence, Compare, Label, Construct an explanation/argument, Describe, Summarize, Complete
Hot Text Selectable (HT)	Highlight, Identify, Select, Choose

Machine Scored Constructed Response (MSCR) Interactions

Machine Scored Constructed Response interactions require scoring logic or a machine rubric within the interaction. MSCR interaction types include:

Machine Scored Constructed Response Interaction Type	Task Demands that can be Assessed
Equation Editor (EQ)	Calculate, Mathematically describe/represent/model, Identify
Table Input (TI)	Calculate, Sequence, Identify, Organize, Chart
Grid Interaction (GI)	Graph, Model, Represent, Show, Create
Simulation Interaction (Sim)	Investigate, Experiment, Observe, Gather/collect data, Model
Natural Language (NL)	Describe, Compare, Summarize, Explain
Editing Task (ET)	Correct
Word Builder (WB)	Identify

Appendix 2-B

Item Specifications – Grade 3 – High School

Introduction

This document presents *cluster specifications* for use with the Next Generation Science Standards (NGSS). These standards are based on the Framework for K-12 Science Education. The present document is not intended to replace the standards, but rather to present guidelines for the development of items and item clusters used to measure those standards.

The remainder of this section provides a very brief introduction to the standards and the framework, an overview of the design and intent of the item clusters, and a description of the cluster specifications that follow. The bulk of the document is composed of cluster specifications, organized by grade and standard.

Background on the framework and standards

The Framework for K-12 Science Education are organized around three core dimensions of scientific understanding. The standards are derived from these same dimensions:

- Disciplinary Core Ideas: The fundamental ideas that are necessary for understanding a given science discipline. The core ideas all have broad importance within or across science or engineering disciplines, provide a key tool for understanding or investigating complex ideas and solving problems, relate to societal or personal concerns, and can be taught over multiple grade levels at progressive levels of depth and complexity.
- Science and Engineering Practices: The practices are what students DO to make sense of phenomena. They are both a set of skills and a set of knowledge to be internalized. The SEPs reflect the major practices that scientists and engineers use to investigate the world and design and build systems.
- Cross-Cutting Concepts: These are concepts that hold true across the natural and engineered world. Students can use them to make connections across seemingly disparate disciplines or situations, connect new learning to prior experiences, and more deeply engage with material across the other dimensions. The NGSS requires that students explicitly use their understanding of the CCCs to make sense of phenomena or solve problems.
- There is substantial overlap between and among the three dimensions. For example, the cross-cutting concepts are echoed in many of the disciplinary core ideas. The core ideas are often closely intertwined with the practices. This overlap reflects the nature of science itself. For example, we often come to understand and communicate causal relationships by employing models to make sense of observations. Even within a dimension, overlap exists. Quantifying characteristics of phenomena is important in developing an understanding of them, so employing computational and mathematical thinking in the construction and use of models is a very common scientific practice, and one of the cross-cutting concepts suggests that scientists often infer causality by observing patterns. In short, the dimensions are not orthogonal.

The framework envisions effective science education as occurring at the intersection of these interwoven dimensions: students learn science by doing science—applying the practices through the lens of the cross-cutting concepts to investigate phenomena that relate to the content of the disciplinary core ideas.

Item clusters

Each item cluster is designed to engage the examinee in a grade-appropriate, meaningful scientific activity aligned to a specific standard.

Each cluster begins with a phenomenon, an observable fact or design problem that engages student interest and can be explained, modeled, investigated, or designed using the knowledge and skill described by the standard in question. What it means to be observable varies across practices. For example, a phenomenon for a performance expectation exercising the *analyze data* practice may be observable through regularities in a data set, while standards related to the *development and use of models* might be something that can be watched, seen, felt, smelled, or heard. What it means to be observable also varies across grade levels. For example, elementary-level phenomena are very concrete and directly observable. At the high school level, an observation of the natural world may be more abstract--for

example, "observing" changes in the chemical composition of cells through the observation of macroscopic results of those changes on organism physiology, or through the measurement of system- or organ-level indications. Content limits refine the intent of the performance expectations and provide limits on what may be asked of items in the cluster to structure the student activity. The content limits also reflect the disciplinary core ideas learning progressions that are present in the K-12 Framework for Science Education.

The task or goal should be explicitly stated in the stimulus or the first item in the cluster: statements such as "In the questions that follow, you will develop a model that will allow you to identify moons of Jupiter," or "In the questions below, you will complete a model to describe the processes that lead to the steam coming out of the teapot." Whereas item clusters have been described elsewhere as "scaffolded," they are better described as providing structure to the task. For example, some clusters begin with students summarizing data to discover patterns that may have explanatory value. Depending on the grade level and nature of the standard, items may provide complete table shells or labeled graphs to be drawn, or may require the student to choose what to tabulate or graph. Subsequent items may ask the student to note patterns in the tabulated or graphed data and draw on domain content knowledge to posit explanations for the patterns.

These guidelines for clusters do not appear separately in the specifications. Rather, they apply to all clusters.

Structure of the cluster specifications

The item cluster specifications are designed to guide the work of item writers and the review of item clusters by stakeholders.

Each item cluster has the following elements:

- The text of the performance expectations, including the practice, core idea, and cross-cutting concept.
- Content limits, which refine the intent of the performance expectations and provide limits of what may be asked of examinees. For example, they may identify the specific formulae that students are expected to know or not know.
- Vocabulary, which identifies the relevant technical words that students are expected to know, and related words that they are explicitly not expected to know. The vocabulary included in both sections (Students are Expected to Know and Students Are Not Expected to Know) were developed after the reviews of standards at the current/preceding grades, the original NGSS documentation, and item writer reference documentation including the Children Writers' Word Book and ED Core Vocabularies in Reading, Mathematics, Science and Social Studies. All vocabulary included in the specifications was reviewed and edited by teacher committees during the specification reviews by states. Of course, the latter category should not be considered exhaustive, since the boundaries of relevance are ambiguous, and the list is limited by the imagination of the writers/reviewers.
- Sample phenomena, which provide some examples of the sort of phenomena that would support effective item clusters related to the standard in question. In general, these should be guideposts, and item writers should seek comparable phenomena, rather than drawing on those within the documents. Novelty is valued when applying scientific practices.
- Task demands comprise the heart of the specifications. These statements identify the types of items and activities that item writers should use, and each item written should be clearly linked to one or more of the demands. The verbs in the demands (e.g., *select, identify, illustrate, describe*) provide guidance on the types of interactions that item writers might employ to elicit the student response. We avoid explicitly identifying interaction types or item formats to accommodate future innovations and to avoid discouraging imaginative work by the item writers. All task demands should be aligned to a minimum of one of the three dimensions (DCI, SEP and CCCs) and across task demands within a cluster, all three dimensions must be addressed.

• For each cluster we present, the printed documentation includes the cluster, the task demands represented by each item, and its linkage to the content, practice and cross-cutting concept identified in the performance expectation.

Item cluster specifications follow, organized by domain and standard.

Performance	3-PS2-1					
Expectation	Plan and conduct an inve	estigation to provide evidence of the effects of bala	anced and unbalanced			
	forces on the motion of	an object.				
Dimensions	Planning and Carrying	PS2.A: Forces and Motion	Cause and Effect			
	Out Investigations • Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.	 Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) PS2.B: Types of Interactions Objects in contact exert forces on each other. 	 Cause and effect relationships are routinely identified. 			
Clarifications	Clarification Statements					
and Content	• Examples could	include an unbalanced force on one side of a ball	can make it start moving,			
Limits	and balanced fo	rces pushing on a box from both sides will not proc	duce any motion at all.			
	Content Limits					
	 Assessment is limited to gravity being addressed as a force that pulls objects down. 					
	Assessment is lir	nited to one variable at a time: number, size, or di	rection of forces.			
	Assessment doe	s include normal force, but not by name or magnit	ude.			
	 Assessment doe 	s not include quantitative force size, only qualitative	le and relative.			
Science	Strength, direction, spee	ed, gravity, net, sum, weight (physical).				
Vocabulary						
Students are						
Expected to						
Know						
Science	Velocity, acceleration, m	ass, friction, vector, quantitative, relative, scale, w	eight (mass • gravity),			
Vocabulary	Newtons, normal force.					
Not Expected						
to Know						
	I	Phenomena				
Context/	Example Phenomena for	· 3-PS2-1:				
Phenomena	Kids of the same	size and strength play a game of tug of war. When	n the same number of kids			
	are on each side	, a ribbon tied to the rope does not move. When n	nore kids are on one side,			
	the rope moves	in that direction.				
	A ball rests on th	ne ground, unmoving. When it is gently kicked, it m	oves slowly in the			
	direction it was	kicked. When it is kicked harder, it moves more qu	ickly in the direction it			
	 Δ hov is sitting it 	a the center of a table. Strings attached to the left	and right sides of the boy			
	hang over the sid	des of the table. Identical weights can be attached t	to the end of these strings			
	 A flat track with 	posts and rubber bands on either ends of the trac	k. The student can pull a			
	car back differer	it distances to gather data.				

This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
 Assemble, complete, or identify, from a collection including distractors, the essential components of an investigation that studies balanced and unbalanced forces on an object at rest and/or in motion.
 Identify the variables in the investigation that are held constant and which are changing, and define important factors in the design including number of trials, methods, and techniques.
 Identify the observations that should be collected in an investigation of an object's motion to determine the forces on the object and the causes of those forces.
4. Observe, collect, and record data from observations of the forces acting on an object at rest and/or in motion after forces of different strengths and/or directions are applied, including both balanced and unbalanced forces.*
 Identify from a list, including distractors, the effects of forces on an object's motion and the cause of those forces.
 Make predictions about the effects of changes in the motion of an object given specific forces. Predictions can be made by manipulating components of the investigation, completing illustrations, or selecting from lists with distractors.
denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	3-PS2-2				
Expectation	Make observations and/or measurements of an object's motion to provide evidence that a pattern				
	can be used to predict future motion.	can be used to predict future motion.			
Dimensions	Planning and Carrying Out	PS2.A Forces and Motion	Patterns		
	Investigations	• The patterns of an object's	• Patterns of change		
	 Make observations and/or 	motion in various situations can	can be used to make		
	measurements to produce data to	be observed and measured;	predictions.		
	serve as the basis for evidence for	when that past motion exhibits a			
	an explanation of a phenomenon	regular pattern, future motion			
	or to test a design solution.	can be predicted from it.			
	_				
Clarifications	Clarification Statements				
and Content	• Examples of motion with a pre	dictable pattern could include a child	swinging in a swing, a ball		
Limits	rolling back and forth in a bow	l, and two children on a seesaw.			
	Content Limits				
	 Technical terms, such as magn 	itude, velocity, momentum, and vect	or quantity, are not		
	introduced at this level, but th	e concept that some quantities need	both size and direction		
	to be described is developed.				
	<u>Students do not need to know</u>	: Newton's laws of motion, Law of Co	nservation of Energy		
Science	Speed, distance, height, time, mass, fo	rce, gravity, electrical field, static elec	ctricity, distribution of		
Vocabulary	charged particles, electrical charge, ne	gatively charged, positively charged,	neutrally charged,		
Students Are	magnetic field, polarity (magnetic), No	rth pole, South pole, attraction, repu	lsion, electromagnet.		
Expected to					
Know					
Science	Frequency, amplitude, displacement, e	equilibrium position, oscillate, momer	ntum, velocity, vector,		
Vocabulary	elastic collision, inelastic collision, frict	ion, acceleration of gravity, work, pov	wer, controlled variable,		
Students Are	dependent variable, independent varia	able, kinetic energy, potential energy			
Not Expected					
to Know					
	Ph	enomena			
Context/	Some example phenomena for 3-PS2-2	2:			
Phenomena	 A boy and a girl play on a swin 	g set. In 10 tries, the girl cannot get tl	ne boy to swing higher		
	than the height she released h	im.			
	A ball can be thrown farther w	when a person launches the ball from a	a plastic ball thrower		
	rather than from his/her bare	hand.			
	A marble is rolled down a slide	e. It takes five seconds for the marble	to reach the bottom of		
	the slide. The same marble is rolled down another slide. This time, it takes the marble two				
	seconds to reach the bottom o	of the slide.			
This Performance Expectation and associated Evidence Statements support the following Task Demands.					
Task Demands					
1. Identify	the output data that should be collected	a in an investigation of an object's mo	ition.		
2. Make and/or record observations about an object's motion as it repeats a pattern over time.					

ure
ure

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	3-PS2-3				
Expectation	Ask questions to determine cause and effect relationships of electric or magnetic interactions				
	between two objects not in contact with each other.				
Dimensions	Asking Questions and	PS2.B: Types of Interactions	Cause and Effect		
	 Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships. 	• Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.	 Cause and effect relationships are routinely identified, tested, and used to explain change. 		
Clarifications	Clarification Statements				
and Content Limits	 Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force. Content Limits Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity. Limit to strictly qualitative observations. Limit content to ask questions about how electric and magnetic objects interact, and the investigation of these phenomena within the scope of the classroom. Students should be able to identify the direction of the force, but not the shape of the magnetic or electric ford. 				
Science	Attraction, repulsion, n	orth pole, south pole, positive charge, negative charg	e, static electricity.		
Vocabulary Students are Expected to Know			· · · · ·		
Science Vocabulary Students are Not Expected to Know	Force fields, test charge, protons, neutrons, electrons, field gradients, insulator, conductor.				
		Phenomena			
Context/ Phenomena	 Example Phenomena for A balloon rubbe string. A magnet floats A magnet touch on top of the tag Two opposite p 	or 3-PS2-3: ed against a sweater attracts a whole grain oat O-shap s on top of another magnet when aligned correctly. ning the underside of a glass table can move a piece o able. poled magnets suspended by strings in air will levitate	oed cereal attached to a f metal sitting above it		

-					
This Performance Expectation and associated Evidence Statements support the following Task Demands.					
	Task Demands				
1.	Select or identify from a collection, questions that will help clarify the properties that are correlated with the				
	strength or direction of the forces in the phenomenon. In addition to plausible distractors, distractors may				
	also include non-testable ("nonscientific") questions.*				
2.	Make and/or record observations about how the size of the forces, both magnetic and electric, depend on				
	different characteristics such as strength/orientation of the magnet, the amount of electric charge, materials,				
	etc.				
3.	Identify, describe, or select from a collection, characteristics, properties, features, and/or processes to be				
	manipulated or held constant, while gathering information to answer a well-articulated question about the				
	cause and effect relationships of electric or magnetic interactions.*				
4.	Select or describe conclusions relevant to the question posed which are supported by the data, especially				
	inferences about causes and effects, related to static electricity and/or magnetism.				
5	Predict outcomes when properties or proximity of the objects are changed given the inferred cause and				
5.	effect relationships related to static electricity and/or magnetism				
	enect relationships, related to static electricity and/or magnetism.				

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD1 and TD3 **must be** used together.

Performance	3-PS2-4						
Expectation	Define a simple design problem that can be solved by applying scientific ideas about magnets.						
Dimensions	Asking Questions and	PS2.B: Types of Interactions					
	Defining Problems	 Electric and Magnetic forces between a pair of 					
	• Define a simple problem	objects do not require the objects to be in contact.					
	that can be solved	The sizes of the forces in each situation depend on					
	through the development	the properties of the objects and their distances					
	of a new or improved	apart, and, for forces between two magnets, on					
	object or tool.	their orientation relative to each other.					
Clarifications	Clarification Statements						
and Content	Examples of problems	• Examples of problems could include constructing a latch to keep a door shut and creating a					
Limits	device to keep two moving objects from touching each other.						
	Content Limits						
	 Students only need to 	hnow the basics about magnets. They do not need to kr	now about the				
	magnetic field and ho	w it is shaped for different objects, etc.					
	 Students do not need 	to know how a magnet can magnetize other objects; the	ey just need to				
	know that it does. For	example, a paper clip is not magnetic but will be attract	ed to a magnet.				
	(The student does not	t need to know anything about magnetic domains.)	-				
	 Students do not need 	to know how electricity and magnetism are coupled (that	at moving				
	electrons create a ma	gnetic field and that a changing magnetic field creates a	current).				
	 Students do not need 	to know anything about magnets except that they can re	epel/attract each				
	other based on their o	prientation relative to each other.					
Science	Magnetic, attraction, repulsion, non-contact force, pole, North Pole, South Pole, bar magnet.						
Vocabulary							
Students Are							
Expected to							
Know							
Science	Force fields, field gradients, conductor, orientation, magnetic field, exert, interaction,						
Vocabulary	electromagnetism.						
Students Are							
Not							
Expected to							
Know							
		Phenomena					
Context/	Some example phenomena fo	r 3-PS2-4:					
Phenomena	The shower leaks beca	ause the curtain is not secured to the bottom of the bath	tub.				
	Things continually fall	out of a handbag because the latch is not secure.					
	• While working on a project, pencil shavings were dropped on the carpet and the vacuum may						
	not have cleaned them all up.						
	Two carts used in expe	eriments keep damaging each other when they collide.					
This Performance Expectation and associated Evidence Statements support the following Task Demands.							
Task Demands							
1. Identify or assemble from a collection, including distractors, the relevant aspects of the problem that given							
design solutions, if implemented, will resolve/improve.							

- 2. Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained OR to be used to solve the problem. This may entail sorting relevant from irrelevant information or features.
- 3. Express or complete a causal chain explaining how the repulsion or attraction of magnets will solve the problem that has been identified. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.
- 4. Using given data, propose/illustrate/assemble a potential device (prototype) or solution.

5. Describe, identify, and/or select information needed to support an explanation about the proposed solution.
| Performance | 3-LS1-1 | | | |
|--|---|--|--|--|
| Expectation | Develop models to describe that organisms have unique and diverse life cycles but all have in | | | |
| | common birth, growth, reproduction, and death. | | | |
| Dimensions | Developing and Using | LS1.B: Growth and Development of Organisms | Patterns | |
| | Models | Reproduction is essential to the continued | Patterns of change | |
| | Develop models to | existence of every kind of organism. Plants | can be used to make | |
| | describe | and animals have unique and diverse life | predictions. | |
| | phenomenon. | cycles. | | |
| | | | | |
| Clarifications | Clarification Statements | | | |
| and Content | Changes organisr | ns go through during their lifetime form a pattern. | | |
| Linnes | Content Limits | | | |
| | Assessment of planet | ant life cycles is limited to those of flowering plant. | S. | |
| | Assessment does | not include details of human reproduction. | | |
| | Students do not r | need to know: the alternation of generations life cy | cle, the human | |
| | reproductive syst | em, mitosis and meiosis. | , | |
| | | | | |
| Science | Adult, growth, parent, po | llen, offspring, structure, feature, trait, young, roo | t, stem, leaf/leaves, | |
| Vocabulary | seed, flower, petal | | | |
| Students Are | | | | |
| Expected to | | | | |
| Know | | | | |
| Science | Organism, breed, transfer, development, germination, reproductive system, cell, tissue, egg, | | | |
| Students Are | motomorphosis, chrysolis | ar, multicellular, specialized cell, cell division, varia | ation, juvenile, | |
| Not Expected | ovule stigma style | , pupa, spores, pistil, stamen, ovary, anther, mane | ent, sepai, receptacie, | |
| to Know | ovule, sugina, style. | | | |
| | | Phenomena | | |
| Context/ | Some example phenome | na for 3-LS1-1: | | |
| Phenomena | A young moth bu | ilds a soft case around it called a cocoon and a you | ing butterfly builds a | |
| | hard case called a | a chrysalis. | | |
| | A young ladybug | looks very different from an adult ladybug. | | |
| | Plants and anima | ls both form eggs. | | |
| | A pea planted in t | he ground grows into a new pea plant. | | |
| This Perfo | prmance Expectation and a | ssociated Evidence Statements support the follow | ing Task Demands. | |
| | | Task Demands | 0 | |
| 1. Select th | e components needed to r | nodel the phenomenon. Components might includ | le stages of life cycles | |
| such as l | such as birth, growth, reproduction, and death. | | | |
| 2. Assembl
different | e or complete an illustration types of organisms. | on or flow chart that is capable of representing the | patterns in life cycles of | |
| 3. Manipul
that act | ate the components of a m
to result in a phenomenon | odel to demonstrate the changes, properties, pro- | cesses and/or events | |
| 4. Make predictions about the effects of changes in life cycles on organisms. Predictions can be made by manipulating model components, completing illustrations, or selecting from a list with distractors. | | | | |

- 5. Given models or diagrams of life cycles, identify relevant components such as birth, growth, reproduction, and death, and how the life cycles are different in each scenario.
 - 6. Identify missing components, relationships, or other limitations of the model of a life cycle.
- 7. Describe, select, or identify the relationships among components of a model that describe the patterns of life cycles among different organisms.

Performance	3-LS2-1			
Expectation	Construct an argument that some animals form groups that help members survive.			
Dimensions	Engaging in Argument	LS2.D: Social Interactions and Group	Cause and Effect	
	from Evidence	Behavior	 Cause and effect 	
	 Construct an 	 Being part of a group helps animals obtain 	relationships are	
	argument with	food, defend themselves, and cope with	routinely identified and	
	evidence, data,	changes. Groups may serve different	used to explain change.	
	and/or a model.	functions and vary dramatically in size.		
Clarifications	Clarification Statements			
and Content	 Focus is on how b 	peing part of a group helps animals obtain food	, defend themselves, and	
Limits	cope with change	es, and does not cover how group behavior evo	lved as a result of a survival	
	advantage.			
	Content Limits			
	 Assessment does 	not include the evolution of group behavior.		
	 <u>Students do not r</u> 	need to know: social hierarchy in animal group	s (pecking order, dominance,	
	submissive, altrui	ism).		
Science	Environment, prey, preda	tor, characteristic, habitat, species, herd, inhe	rit, trait, diet, mate, parent	
Vocabulary				
Students Are				
Expected to				
Know				
Science	Organism, social, relative, predation, hereditary, harmful, beneficial, variation, probability,			
Vocabulary	adaptation, decrease, inc	rease, behavioral, variation, ecosystem, peckir	ig order,	
Students Are	dominance/submissive b	ehavior, hierarchy, migrate, defend.		
Not Expected				
to Know				
<u> </u>		Phenomena		
Context/	Some example phenome	na for 3-LS2-1:		
Phenomena	In Yellowstone Na	ational Park, a wolf preys on a much larger bisc	on.	
	In the Willamette	e Valley, a colony of beavers builds a dam.		
	 A colony of ants p 	protects its nests.		
	 A male honey been seen as a male honey been seen seen as a male honey been seen as a male honey been seen as	e returns to a hive each day.		
This Perfo	ormance Expectation and a	ssociated Evidence Statements support the fol	lowing Task Demands.	
		Task Demands		
1. Identify	patterns or evidence in the	e data that support inferences and/or determin	e relationships about the	
effect of	group membership on sur	vival of an animal.		
2. Understa	and and generate simple b	ar graphs or tables that document patterns, tre	ends, or relationships	
between group membership and survival.				
3 Sort obs	2 Sort observations /avidance into those that appear to support or not support an argument			
5. 3011 005				
4. Based or	n the provided data, identi	fy or describe a claim regarding the relationshi	p between survival of an	
animal a	nd being a member of a gr	oup.		
5. Identify,	5. Identify, summarize, select or organize given data or other information to support or refute a claim regarding			
the relat	ionship between group me	embership and survival of an animal.*	- 0	

6. Using evidence, explain the relationship between group membership and survival.*

*denotes those task demands which are deemed appropriate for use in stand-alone item development

This page was intentionally left blank.

Performance	3-LS3-1		
Expectation	Analyze and interpret data to provide evidence that plants and animals have traits inherited from		
	parents and that varia	ation of these traits exists in a group of similar organisms.	
Dimensions	Analyzing and	LS3.A: Inheritance of Traits	Patterns
	Interpreting Data	 Many characteristics of organisms are inherited from 	 Similarities and
	 Analyze and 	their parents.	differences in
	interpret data to		patterns can be
	make sense of	LS3.B: Variation of Traits	used to sort and
	phenomena using	• Different organisms vary in how they look and function	classify natural
	logical reasoning.	because they have different inherited information	phenomena.
Clarifications	Clarification Stateme	ent	
and Content	Patterns are	the similarities and differences in traits shared between	offspring and their
Limits	parents, or a	mong siblings.	
	Content Limits		
	 Emphasis is o 	on organisms other than humans.	
	Assessment of	does not include genetic mechanisms of inheritance and	prediction of traits,
	including con	cepts of dominant/recessive traits or sex-linked traits.	
	Assessment is Graphs and a	s limited to non-numan examples.	hort
	Graphs and C Types of mat	harts can include bar graphs, pictographs, pie charts, tany c	lidit.
	• Types of mat		
Science	Parent, sibling, chara	cteristic, offspring, parent-offspring similarity, feature, inhe	rit, inherited
Vocabulary	characteristic, reproduce		
Students are			
Expected to			
Science	Transfer variation al	lele hereditary information identical Punnett square tran	smission gene
Vocabulary	genetic genetic variation, dominant trait recessive trait		
Students are			
Not Expected			
to Know			
	1	Phenomena	
Context/	For this performance	expectation the phenomena are sets of data. Those are the	observed facts that
Phenomena	students will look at t	to discover patterns. Below, we enumerate some of the pat	terns that might
	comprise the data set	ts (phenomena) to be analyzed.	
	Example Phenomena	for 3-LS3-1:	
	Two corn plan	nts in a garden reproduce. In the next generation, the offsp	ring vary in height.
	(Augmentatio	on: We will provide a data table displaying each member of	the subsequent
	generation ar	nd the relevant trait possessed.)	
	Over a four-y the offension	ear period, the offspring of two tall blueberry plants always	grow taller than
	table of the n	or two nearby short blueberry plants. (Augmentation: We vous a four year no	rind correlated
	with the nare	ent nlants.)	nou, correlateu
This Perfo	ormance Expectation a	nd associated Evidence Statements support the following Ta	ask Demands.
		Task Demands	

- Organize or summarize data to highlight trends, patterns, or correlations between the traits of offspring and those of their parents and/or siblings.*
- 2. Generate graphs or tables that document patterns, trends, or correlations in inheritance of traits.*
- 3. Identify patterns or evidence in the data that support inferences about inheritance of traits from parents to offspring.*

Performance	3-LS3-2			
Expectation	Use evidence to support the explanation that traits can be influenced by the environment.			
Expectation Dimensions Clarifications and Content Limits	Use evidence to supp Constructing explanations and designing solutions • Use evidence (e.g., observations, patterns) to support an explanation. Clarification Stateme • Examples of t grown with ir food and little Content Limits	 LS3.A: Inheritance of Traits Other characteristics result from individuals' interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. LS3.B: Variation of Traits The environment also affects the traits that an organism develops. Cause and Effe Cause-and-effect relationships are routinely identified and used to explain the environment also affects the traits that an organism develops. Cheven and Effect Cause and Effect Cause and Effect Cause-and-effect Cause-and-effect		
	 Assessment s Content shou 	hould focus on physical traits. Id not include human traits.		
Science Vocabulary Students Are Expected to Know	Offspring, feature, inl	nerit, diet, survival, flood, drought, habitat, reproduce		
Science Vocabulary Students Are Not Expected to Know	Organism, variation, v	version, harmful, beneficial, increase, decrease, trend		
		Phenomena		
Context/	Some example phenc	omena for 3-LS3-2:		
Phenomena	The arctic fox	is white in winter but turns brown in the summer.		
	 Flamingoes a Trees growing A goldfish in a 	re born gray, but some become very pink as they grow. g on the edge of cliffs are often bent. a pond grows larger than one in a fish bowl.		
This Perforn	nance Expectation and	associated Evidence Statements support the following Ta	ask Demands.	
Task Demands				
1. Describe relevant	or select the relations from irrelevant inform	hips, interactions, or processes to be explained. This may nation or features.	y entail sorting	
2. Express include i complet	or complete a causal ch ndicating directions of ing cause-and-effect ch	nain explaining that traits can be influenced by the enviro causality in an incomplete model such as a flow chart or nains.	onment. This may diagram, or	
3. Identify	3. Identify evidence supporting the inference of causation that is expressed in a causal chain.			

- 4. Use an explanation to predict changes in the trait of an organism given a change in environmental factors.
- 5. Describe, identify, and/or select information needed to support an explanation of environmental influence on traits.

This page was intentionally left blank.

Performance	3-LS4-1		
Expectation	Analyze and interpret data from fossils to provide evidence of the organisms and the environments		
	in which they lived long ago.		
Dimensions	Analyzing and	LS4.A: Evidence of Common Ancestry and	Scale, Proportion, and
	Interpreting Data	Diversity	Quantity
	 Analyze and interpret 	 Some kinds of plants and animals that once 	 Observable
	data to make sense of	lived on Earth are no longer found	phenomena exist
	phenomena using	anywhere.	from very short to
	logical reasoning,	 Fossils provide evidence about the types of 	very long periods.
	mathematics, and/or	organisms that lived long ago and also about	
	computation.	the nature of their environments.	
Clarifications	Clarification Statements		
and Content	 Examples of data control 	ould include type, size, and distributions of fossil o	organisms.
Limits	Examples of fossils	and environments could include marine fossils fo	und on dry land,
	tropical plant fossil	s found in Arctic areas, and fossils of extinct organ	nisms.
	Focus is on the foss	ils and environment in which the organisms lived	, not how the fossils got
	to where they are t	oday.	
	Data can be represe	ented in tables and/or various graphic displays.	
	Data collected by d	ifferent groups can be compared and contrasted i	to discuss similarities
	and differences in t	heir findings.	
	Contant Limits		
	Assessment does not include identification of specific fassils or present plants and animals		
	 Assessment is limited to major fossil types and relative ages 		
	 Graphs and charts can include har graphs nictographs nie charts and tally charts 		
	 Graphs and charts can include bar graphs, pictographs, pie charts, and tany charts. Types of math can include simple addition/subtraction 		
	 Standard units that can be used to measure and describe physical quantities such as weight 		
	time, temperature, and volume.		
Science	Exist, existence, ecosystem	, characteristic, habitat, species, volcanic eruptior	n, climate, extinct,
Vocabulary	extinction, predator, time period, earthquake, erosion, weathering.		
Students Are			
Expected to			
Know			
Science	Chronological order, fossil r	ecord, radioactive dating, descent, ancestry, evol	ution, evolutionary,
Vocabulary	genetic, relative, rock layer		
Students Are			
Not Expected			
to Know		Dharana	
Contoxt/	For this parformance surge	Phenomena	a the observed fasts
Phenomena	that students will look at to	discover patterns. Below, we enumerate some o	e the observed facts
Flienomena	might comprise the data se	ts (phenomena) to be analyzed	i the patterns that
	Some example phenomena	for 3-LS4-1:	
	Fossil trees are four	nd in sedimentary rocks in Antarctica.	
	The Redwall Limest	one in the Grand Canyon contains many different	t fossils including corals.
	clams, octopi, and f	fish.	

	 Whale fossils have been found in rocks in the Andes Mountains. Fossils of corals and snails are found in Iowa.
Т	his Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Organize or summarize data to highlight trends, patterns, or correlations between plant and animal fossils and the environments in which they lived.
2.	Generate graphs or tables that document patterns, trends, or correlations in the fossil record.
3.	Identify evidence in the data that supports inferences about plant and animal fossils and the environments in which they lived.

Performance	3-LS4-2			
Expectation	Use evidence to construct an explanation for how the variations in characteristics among individuals			
	of the same species may prov	ide advantages in surviving, finding ma	tes, and reproducing.	
Dimensions	Constructing Explanations	LS4.B: Natural Selection	Cause and Effect	
	 and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation. 	• Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.	 Cause and effect relationships are routinely identified and used to explain change. 	
Clarifications	Clarification Statements		1	
and Content Limits	 Examples of cause and effect relationships could be: plants that have larger thorns than other plants may be less likely to be eaten, and animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring. 			
	Content Limits Differences between	individuals helping or hurting chances of	of survival and reproduction	
	should be included.	100	·	
	Data sets can include	not only common trends but also outlie	ers and anomalous data points.	
	Analysis of data shoul	ld be limited to patterns and trends.		
	 Students are not expected to evaluate the extent at which the sample is representative of a manufacture 			
	 Students do not need 	to know: Mechanisms or patterns of ir	heritance, detailed life cycles	
	<u>Students do not need to know</u> . Meenanishis of patterns of inferitance, detailed me cycles.			
Science Vocabulary Students are Expected to Know	Variation, advantage, reproduce, relationship, mating, breeding, behavior, plumage, pollination, camouflage.			
Science	Natural and artificial selection, evolution, genetics, adaptation,			
Vocabulary				
Not Expected				
to Know				
		Phenomena		
Context/	Some example phenomena fo	or 3-LS4-2:		
Phenomena	 The same species of walking stick in California has two different color variations. The green walking sticks are found on bushes with thick green leaves, whereas the striped walking sticks are found on bushes with needle-like leaves. In a given population, there are more male [X Bird] with larger, brighter feathers in the 			
	population than male	s with smaller, muted feathers.		
	Acacia trees that are	browsed upon by X animal grow longer	thorns at X height. Acacia trees	
	that are prowsed upo browsed upon at all d	יח טא ז animai grow longer thorns at Y r Io not grow longer thorns	leight. Acacia trees that are not	
	 Io moths use eyespot 	s on their inner wings to frighten preda	tors away. Larger eyespots are	
	more effective.			
This Perfo	This Performance Expectation and associated Evidence Statements support the following Task Demands.			

	Task Demands
1.	Articulate, describe, illustrate, or select the variations of characteristics to be explained. This may entail sorting relevant from irrelevant information or features.
2.	Identify evidence supporting the conclusion that the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.
3.	Describe, identify, and/or select information needed to support an explanation that a characteristic provides advantages in surviving and reproducing.
4.	Select or identify a prediction about survival or reproduction rates given a change in a characteristic. The prediction should follow from an explanation or causal relationship supported in earlier items.
5.	Identify additional evidence that would help clarify, support, or contradict a hypothesized relationship between characteristics of individuals and their chances of survival and reproductive rates.
6.	Express or complete a causal chain that explains how different characteristics among individuals of the same species provide advantages in survival and reproduction. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram or completing cause and effect chains.*
7.	Use evidence to construct an explanation for differences in survival and/or reproduction given a difference in traits between individuals of the same species.*

Performance	3-LS4-3			
Expectation	Construct an argument with evidence that in a particular habitat some organisms can survive			
	well, some survive less well, and some cannot survive at all.			
Dimensions	Engaging in Argument	LS4.C: Adaptation	Cause and Effect	
	from Evidence	 For any particular environment, 	 Cause and effect 	
	 Construct an 	some kinds of organisms survive	relationships are routinely	
	argument with	well, some survive less well, and	identified and used to	
	evidence.	some cannot survive at all.	explain change.	
Clarifications	Clarification Statements			
and Content	 Examples of evid 	lence could include needs and characte	ristics of the organisms and	
Limits	habitats involved depend on each	d. The organisms and their habitat make other.	e up a system in which the parts	
	Content Limits			
	While students a	are not expected to know the definition	s to vocabulary terms such as	
	extinction, clima	te, and mimic, they are expected to know	ow the general concepts behind	
	these terms.			
	<u>Students do not</u>	need to know: mechanisms of natural s	election and evolution of	
	species.			
Science	Habitat, health, species, population, region, resource, behavior, growth, petal, thorn, structure,			
Vocabulary	characteristics, mate, trait.			
Students Are				
Expected to				
Know				
Science	Organism, threaten, impact, terrestrial, climate change, response, body plan, external, function,			
Vocabulary	internal, invertebrate, ad	daptation, beneficial change, detriment	al change, species diversity,	
Not Expected	gene, variation, artificial	selection, natural selection.		
to Know				
		Phenomena		
Context/	Some example phenome	ena for 3-LS4-3:		
Phenomena	 Desert plants are 	e able to survive where there is little to	no rain.	
	Black bears surv	ive the harsh winter months of their for	est habitats by going into a deep	
	sleep.			
	 The artic fox is b 	etter able to survive in colder climates	than the red fox.	
	Emperor pengui	ns have special traits which help them s	urvive in Antarctica.	
This Perform	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
		Task Demands		
1. Organize traits of	e or summarize data to hig an organism and survival	shlight trends, patterns, and/or determi in its environment.	ne relationships between the	
2. Understa betweer	and and generate simple b n traits of an organism and	par graphs or tables that document patt I its survival in a particular environment	erns, trends, or relationships	
3. Identify those of	 Identify patterns or evidence in the data that supports inferences about characteristics of an organism and those of its environment. 			

- 4. Based on the provided data, identify or describe a claim regarding the relationship between the characteristics of an organism and survival in a particular environment.*
 - 5. Evaluate the evidence to sort relevant from irrelevant information regarding survival of an organism in a particular environment.

Performance	3-LS4-4		
Expectation	Make a claim about the merit of a solution to a problem caused when the environment changes and		
	the types of plants and animals that live there may change.		
Dimensions	Engaging in Argument	LS2.C: Ecosystem Dynamics, Functioning, and Resilience	Systems and
	from Evidence	• When the environment changes in ways that affect a	System Models
	 Make a claim about 	place's physical characteristics, temperature, or	• A system can
	the merit of a	availability of resources, some organisms survive and	be described
	solution to a	reproduce, others move to new locations, yet others	in terms of its
	problem by citing	move into the transformed environment, and some	components
	relevant evidence	die. (secondary)	and their
	about how it meets		interactions.
	the criteria and	LS4.D: Biodiversity and Humans	
	constraints of the	• Populations live in a variety of habitats and change in	
	problem.	those habitats affects the organisms living there.	
Clarifications	Clarification Statements	5	
and Content	 Examples of env 	ironmental changes could include changes in land character	ristics, water
Limits	distribution, ten	nperature, food, and other organisms.	
	Content Limits		
	Assessment is lir	nited to a single environmental change.	
	 Assessment does not include the greenhouse effect or climate change. 		
	• <u>Students do not need to know</u> : greenhouse effect, ultraviolet (UV) radiation, nuclear		
	disasters.		
Science	Population, organism, co	ommunity, habitat, resource, reproduce, shelter, temperatu	re, matter,
Vocabulary	predator, prey, flood, frost, tide		
Students Are			
Expected to			
Know			
Science	Ecosystem, biotic, abioti	c, food web, producer, consumer, decomposer, photosynth	esis, pollinate,
Vocabulary	adapt, energy flow, bios	phere, sustain, predation, mutualism, carrying capacity, vol	cano,
Students Are	earthquake, drought, ar	id, blight.	
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenome	ena for 3-LS4-4	
Phenomena	 To help orname 	ntal bushes grow, no other plants should grow in their imme	ediate vicinity.
	Before stocking	a lake with fish, the lake pollution needs to be reduced.	
	A late frost three	atens the orange groves in Georgia.	
This Perfo	ormance Expectation and	associated Evidence Statements support the following Task	Demands.
		Task Demands	
1. Articulat	e, describe, illustrate, or s	select the relationships, interactions, and/or processes invol	ved when the
types of	plants and/or animals cha	ange as a result of environmental changes. This may entail s	orting relevant
from irre	elevant information or fea	tures.	
2. Identify	a problem that results wh	en the types of plants and/or animals change as a result of	environmental
changes			

- 3. Express or complete a causal chain explaining a solution to problem that results when the types of plants and/or animals change as a result of environmental changes. The causal chain should include the ecosystem before the environmental change, the environmental change, the problem to plants and animals resulting from the environmental change, the solution to the problem, and the effect(s) of the solution on the ecosystem. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.*
- Identify and/or evaluate evidence related to a solution to a problem caused when the types of plants and/or animals change as a result of environmental changes. The evidence may support or refute the solution, or students may identify missing evidence.
- 5. Evaluate a solution to a problem that results when the types of plants and/or animals change as a result of environmental changes, including how the solution may affect plants, animals, and/or other aspects of the ecosystem.*
 - 6. Identify information or data needed to support or refute a claim regarding a problem resulting from an environmental change affecting the native plants and animals.

Performance	3-ESS2-1		
Expectation	Represent data in tables and graphical displays to describe typical weather conditions expected		
	during a particular season.		
Dimensions	 Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. 	 ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. 	 Patterns Patterns of change can be used to make predictions.
Clarifications and Content	Clarification Statements	include average temperature, precipita	tion and wind direction
Limits		include average temperature, precipita	
	Content Limits		
	Assessment of graphical	displays is limited to pictographs and b	ar graphs.
	Assessment does not inc	clude climate change.	
	<u>Students do not need to</u>	know: probabilities or how to calculate	e them, fronts and pressure
	systems, the movements	s of weather systems.	
Science	Season weather temperature r	precipitation patterns average latitude	e longitude
Vocabulary		siccipitation, patterns, average, latitud	c, longitude
Students Are			
Expected to			
Кпоw			
Science	Probability, anthropogenic chang	ge	
Vocabulary			
Students Are			
to Know			
		Phenomena	
Context/	Some example phenomena for 3	B-ESS2-1:	
Phenomena	Vienna, Austria, records	more sunny days in the summer than in	n the winter. Data: Average
	sunshine hours by mont	h for the city, given as a table or graph.	
	People in Florida can oft	en go outside without jackets during th	e winter. Data: Months
	and Temperatures for FI	orida, given as table or graph.	
	Visitors to the desert in	Death Valley, California, were surprised	to be rained on. Data:
	Elags in California's San	In Averages for the region given as table	E for most of the year, but
	are seen blowing to the	NW in winter months. Data: Monthly av	verage wind direction (and
	maybe speed) for the re	gion, given as a table or graphic with wi	nd direction arrows.
This Perfor	rmance Expectation and associate	d Evidence Statements support the follo	owing Task Demands.
		Task Demands	
 Organize patterns 	 Organize and/or arrange (e.g., using illustrations and/or labels), or summarize data to highlight trends, patterns, or correlations in weather patterns.* 		
 Generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations in weather patterns. This may include sorting out distractors.* 			

3. Use relationships and patterns identified in the data to predict weather.

4. Identify patterns or evidence in the data that support conclusions about weather. **

*denotes those task demands which are deemed appropriate for use in stand-alone item development. **TD4 can be used for stand-alone item development if paired with TD2.

Performance	3-ESS2-2				
Expectation	Obtain and combine information to describe climates in different regions of the world.				
Dimensions	Obtaining, Evaluating, and ESS2.D: Weather and Climate Patterns				
	Communicating Information	 Climate describes a range of an 	 Patterns of change 		
	 Obtain and combine information from 	area's typical weather conditions	can be used to		
	books and other reliable media to	and the extent to which those	make predictions.		
	explain phenomena.	conditions vary over years.			
Clarifications	Content Limits				
and Content	 <u>Students do not need to know:</u> co 	omplex interactions that cause weath	er patterns and		
Limits	climate, the role of the water cyc	le in weather.			
Science	Prediction, precipitation, glacier, ocean, r	egion, climate, vegetation, latitude, lo	ongitude, drought,		
Vocabulary	temperature, freeze, atmosphere.				
Students Are					
Expected to					
Know					
Science	Average, high pressure, low pressure, air	mass, altitude, humidity, radiation, w	ater cycle.		
Vocabulary					
Students Are					
Not Expected					
to Know	Dhone				
Contoxt/	Filelic Some example phonomena for 2 ESS2 2:	billella			
Phenomena	Anchorage Alaska has cool summ	pers and very cold winters with a lot o	fsnowfall		
Thenomenu	 It often snows in Colorado in July 	but it does not often snow in Kansas	in July		
	 On the western side of the Cascal 	de Mountains of Oregon, it rains frequ	iently, but on the		
	eastern side, it does not.		activity, but off the		
	 The temperature in London. English 	and does not get very hot in summer	or verv cold in winter.		
		C ,	,		
This Perfo	ormance Expectation and associated Evider	ce Statements support the following	Task Demands.		
	Task De	emands			
1. Organize	e and/or arrange data (including labels and	symbols) regarding the climates in dif	fferent regions to		
highlight	t/identify trends or patterns, or make comp	parisons/contrasts between different	regions and/or		
climatica	ally relevant aspects of their geology and/o	r geography.*			
2. Generat	e or construct tables or assemblages of dat	a (including labels and symbols) that	document the		
similarit	les and differences between climates of dif	ferent regions (this includes completi	ng incomplete maps).		
3. Analyze	and interpret scientific evidence (including	textural and numerical information a	s well labels and		
symbols) from multiple sources (e.g., texts, maps, a	ind/or graphs) that help identify patte	erns in weather in		
regions	of different climate. This includes commun	cating the analysis or interpretation.*	¢		
4. Analyze	and interpret patterns of information on m	aps (including textural and numerical	information as well		
labels ar	nd symbols) to explain, infer, or predict pat	terns of weather over time in a region	1.*		
5. Based or	n the information that is obtained and/or c	ombined, identify, assert, describe, or	r illustrate a claim		
regardin	g the relationship between the location of	a region and its climate, or the relation	onship between		
geologic	al and/or geographical aspects/characteris	tics of a region and its climate.*			
6. Use spat	ial and/or temporal relationships identified	d in the obtained and/or combined cli	mate data to predict		
typical w	veather conditions in a region.				

- 7. Organize and/or arrange data regarding the climate of a region to highlight/identify trends or relationships between the weather patterns of a region and its geology and/or geography.
- 8. Analyze and interpret scientific evidence (including textural and numerical information as well labels and symbols) from multiple sources (e.g., texts, maps, and/or graphs) that helps identify patterns in climate based on geography and/or geology. This includes communicating the analysis or interpretation.

Performance	3-ESS3-1		
Expectation	Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.		
Dimensions	 Engaging in Argument from Evidence Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. 	 ESS3.B: Natural Hazards A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. 	Cause and Effect • Cause-and-effect relationships are routinely identified, tested, and used to explain change.
Clarifications and Content Limits	 Assessment Clarifications Assessment Clarifications Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lighting rods. 		
Science Vocabulary Students Are Expected to Know	Natural process, earthquake, tsunami, tornado, flooding, severe weather, coastal erosion, landslide, avalanche, dams, levees, lightning, lightning rod, forecast, drought. re o		
Science Vocabulary Students Are Not Expected to Know	ScienceFault line, names of clouds, names of storms, magma, types of volcanoes, low pressure, high pressure systems, El Niño, La Niña, jet stream.Students Are Not Expected to KnowFault line, names of clouds, names of storms, magma, types of volcanoes, low pressure, high pressure systems, El Niño, La Niña, jet stream.		
	Phe	nomena	
Context/For this performance expectation, phenomena should refer to hazard and one or more desiPhenomenasolutions.		e or more design	
	 Some example phenomena for 3-ESS3-1: A building with a lightning rod is struck by lightning more often than the surrounding buildings. When the water level of the Feather River was high in February 2017, the water never rose higher than the levees around it, and no flooding occurred. When the water level of the Russian River was high in February 2017, the surrounding area flooded. A house built near the ocean in Surfside, New Jersey, sits on stilts/posts. A basement in a building fitted with a sump pump does not have mold while the basements of other nearby buildings have mold. 		
This Perfe	ormance Expectation and associated Evid	ence Statements support the following	g Task Demands.
1 1.4	Task	Demands	honord that a shires
 Identify or assemble from a collection, including distractors, the relevant aspects of the hazard that a given design solution resolves/improves. 			
2. Using th	e given information, select or identify the	e criteria against which the design solu	tion should be judged.
3. Using gi	ven information, select or identify constra	aints that the design solution must me	et.
4. Identify	4. Identify missing components, relationships, or other limitations of the design solution.		

5. Use an explanation to predict the outcome of a hazard given a change in the design solution.

6. Make a claim about the merit of the design solution that can be defended.

Performance	4-PS3-1			
Expectation	Use evidence to construct an explanation r	elating the speed of an objec	t to the energy of that object.	
Dimensions	 Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation. 	 PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses. 	 Energy and Matter Energy can be transferred in various ways and between objects. 	
Clarifications and Content Limits	 Content Limits Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy. Students are expected to know that energy can be expressed through sound, heat, light, and motion. <u>Students do not need to know:</u> Students do not need to know how to calculate speed, the change in speed (acceleration), or energy. This standard is limited to making strictly qualitative or comparative observations. 			
Science Vocabulary Students Are Expected to Know	Volume, collision, heat transfer, spring (coil), forms of energy (sound, heat, light, motion), conservation of energy, stored energy, energy transfer, gravity.			
Science Vocabulary Students Are Not Expected to Know	Potential energy, kinetic energy, thermal energy, acceleration, velocity. ary 5 Are ected			
Phenomena				
Context/ Phenomena	 Context/ Phenomena One drum can be used to produce loud or quiet percussion sounds. A small bouncing basketball sounds louder than a large bouncing basketball. Damage caused during a high-speed collision is greater than when speeds are slower. A ceramic bowl dropped from a greater height will have a larger debris pattern. 			
This Per	formance Expectation and associated Eviden	ice Statements support the fo	ollowing Task Demands.	
	Task De	emands		
 Articul may er 	 Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.** 			
2. Expres indicat and-ef	2. Express or complete a causal chain explaining that changes in energy and speed are related. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.*			
3. Identif	y evidence supporting the inference of causa	ition that is expressed in a ca	usal chain.	
4. Use an expres	explanation to predict how the speed of an sion of energy will change given a change in	object changes given a chang speed.	ge in energy or how the	
5. Describe, identify, and/or select information needed to support an explanation.				
		• · · · · ·		

**TD 1 should only be used if paired with TD2. TD 2 can be used alone.

This page intentionally left blank.

Performance	4-PS3-2			
Expectation	Make observations to provide evidence that energy can be transferred from place to place by			
	sound, light, heat, a	and electric currents.		
Dimensions	Planning and	PS3.A: Definitions of Energy	Energy and	
	Carrying Out	• Energy can be moved from place to place by moving	Matter	
	Investigations	objects — or through sound, light, or electric currents.	 Energy can be 	
	• Make		transferred in	
	observations to	PS3.B: Conservation of Energy and Energy Transfer	various ways	
	produce data to	• Energy is present whenever there are moving objects,	and between	
	serve as the	sound, light, or heat. When objects collide, energy can be	objects.	
	basis for	transferred from one object to another, thereby changing	-	
	evidence for an	their motion. In such collisions, some energy is typically		
	explanation of a	also transferred to the surrounding air; as a result, the air		
	phenomena or	gets heated and sound is produced.		
	to test a design	• Light also transfers energy from place to place.		
	solution.	• Energy can also be transferred from place to place by		
		electric currents, which can then be used locally to		
		produce motion, sound, heat, or light. The currents may		
		have been produced to begin with by transforming the		
		energy of motion into electrical energy.		
Clarifications	Content Limits			
and Content	Assessment	t does not include quantitative measurements of energy.		
Limits	 Identifying 	how energy is transferred (example: conduction vs. convection) is not part of this	
	PE.			
	• Students do not need to know: Students do not need to know how to do energy calculations.			
	This standard is limited to strictly making observations. Students should know that energy			
	can be give	can be given off as heat or light, but not specifics such as convection, thermal radiation, etc.		
Science	Collision, speed, flo	w, heat conduction, conversion.		
Vocabulary				
Students Are				
Expected to				
Know				
Science	Kinetic energy, pote	ential energy, radiation, convection, transmission, reflection, d	ecibels,	
Vocabulary	resonance, friction,	, hertz, electromagnetic radiation, magnitude, motion energy,	electric circuit,	
Students Are	thermal, conservation	ion of energy.		
Not Expected				
to Know				
	1	Phenomena		
Context/	Some example phe	nomena for 4-PS3-2:		
Phenomena	 A light bulb 	can be powered using the motion of a hamster wheel.		
	 A drinking § 	glass can be broken by a person singing a certain note.		
	 A fan (with 	blades angled at 45 degrees) will spin when placed safely over	burning candles.	
	Touching a	Van der Graaf generator will make your hair stick up.		
This Perfo	rmance Expectation	and associated Evidence Statements support the following Tas	k Demands.	
		Task Demands		

- Identify the materials/tools needed for an investigation of how energy is transferred from place to place through heat, sound, light, or electric currents.
- 2. Identify the data that should be collected in an investigation of how energy is transferred from one place to another through heat, sound, light, or electric currents.
- 3. Make and/or record observations about the transfer of energy from one place to another via heat, sound, light, or electric currents.**
 - 4. Interpret and/or communicate the data from an investigation.**

5. Select, describe, or illustrate a prediction made by applying the findings from an investigation.

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD3 and TD4 <u>must be</u> used together.

Performance	4-PS3-3			
Expectation	Ask questions and predict outcomes about the changes in energy that occur when objects collide.			
Dimensions	Asking Questions	PS3.A: Definitions of Energy	Energy and	
	and Defining	• Energy can be moved from place to place by moving objects	Matter	
	Problems	or through sound, light, or electric currents.	 Energy can be 	
	 Ask questions 		transferred in	
	that can be	PS3.B: Conservation of Energy and Energy Transfer	various ways	
	investigated	• Energy is present whenever there are moving objects,	and between	
	and predict	transforred from one object to another, thereby changing	objects.	
	reasonable	their motion. In such collisions, some energy is typically also		
	outcomes based	transferred to the surrounding air: as a result the air gets		
	such as cause-	heated and sound is produced.		
	and-effect			
	relationships.	PS3.C: Relationship Between Energy and Forces		
	· · · · · · · · · · · · · · · · · · ·	• When objects collide, the contact forces transfer energy so		
		as to change the objects' motions.		
Clarifications	Clarification Stater	nents		
and Content	Emphasis is	s on the change in the energy due to the change in speed, not on	the forces, as	
LITTILS	objects inte			
	Content Limits			
	Assessmen	t does not include quantitative measurements of energy.		
	<u>Students de</u>	o not need to know: names of energy types, how to calculate energy	ergy or forces	
Science	Electric currents, speed, flow, conversion, motion, magnets, magnetism, heat conduction.			
Vocabulary				
Students Are				
Expected to				
Know	Vinction and a stantial angum, fainting from fields and the second state to the state to the state			
Vocabulary	Kinetic energy, potential energy, friction, force fields, vector, magnitude, elastic, inelastic.			
Students Are				
Not Expected				
to Know				
		Phenomena		
Context/	Some example phe	nomena for 4-PS3-3:		
Phenomena	A large way	e crashes into the cliffs of Étretat and some rocks are knocked lo	ose. A small	
	wave then	crashes into the cliffs.		
	A person h	its a nail with a hammer and the nail is driven into a board. The p	erson swings the	
		all, but thisses the fiall.	e heard many	
	feet away	The person then runs down the hallway.	c near a many	
	A bowler ro	bills a ball down a lane. It slams into the pins and knocks several o	f them down.	
	After the p	ins are reset, the bowler rolls the ball down the lane again. The b	all misses and	
	knocks dov	vn no pins.		
This Perfo	ormance Expectation	and associated Evidence Statements support the following Task	Demands.	
		Task Demands		

1.	Select or identify from a collection, including distractors, questions that will help clarify the properties that are correlated with the changes in energy that occur in the phenomenon. In addition to distractors that are plausible responses, distractors may include non-testable ("nonscientific") questions.
2.	Identify, describe, or select from a collection, including distractors, characteristics to be manipulated or held constant while gathering information to answer a well-articulated question.
3.	Select or describe conclusions relevant to the question posed and supported by the data, especially conclusions about causes and effects.
4.	Predict outcomes when properties or proximity of the objects are changed, given the inferred cause-and- effect relationships.
 5.	Describe, identify, gather, and/or select information needed to identify patterns that can be used to predict outcomes about the changes in energy.

Performance	4-PS3-4		
Expectation	Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.		
Dimensions	Constructing	PS3.B: Conservation of Energy and Energy Transfer	Energy and
	Explanations and	• Energy can also be transferred from place to place by	Matter
	Designing	electric currents, which can then be used locally to	• Energy can be
	Solutions	produce motion, sound, heat, or light. The currents may	transferred in
	• Apply scientific	have been produced to begin with by transforming the	various ways
	ideas to solve	energy of motion into electrical energy.	and between
	design		objects.
	problems.	PS3.D: Energy in Chemical Processes and Everyday Life	
		• The expression "produce energy" typically refers to the	
		conversion of stored energy into a desired form for	
		practical use.	
		ETS1.A: Defining Engineering Problems	
		• Possible solutions to a problem are limited by available	
		materials and resources (constraints). The success of a	
		designed solution is determined by considering the	
		desired features of a solution (criteria). Different	
		proposals for solutions can be compared on the basis of	
		how well each one meets the specified criteria for success	
		or how well each takes the constraints into account.	
Clarifications	Clarification Stater	nents	I
and Content	 Examples of devices could include electric circuits that convert electrical energy into motic 		
Limits	energy of a	vehicle, light, or sound; and, a passive solar heater that conve	rts light into heat.
	Examples of constraints could include the materials, cost, or time to design the device.		
	Content Limits		
	 Devices should be limited to those that convert motion energy to electric energy or use 		
	stored ene	rgy to cause motion or produce light or sound.	
Science	Magnetic, motion,	speed, conservation, gravitational, battery, conversion, proper	ties, chemical.
Vocabulary			
Students Are			
Expected to			
Know			
Science	Mass, net force, ve	locity, relative position, constant speed, direction of motion, di	irection of a force,
Vocabulary	deceleration, indep	pendent, economic, control, impact, inertia, Newton's laws (1st	, 2nd, 3rd),
Students Are	stationary, frame of reference, potential energy, mechanical energy, kinetic energy, conserve,		
Not Expected	relative, chemical energy.		
to Know			
Contract	En eline entre servici	Phenomena	
Context/	Engineering practic	es are pulit around meaningtui design problems rather than pr	ienomena. For this
Phenomena	performance expec	cration, a design problem and associated competing solutions v	viii replace
	Some examples of	design problems for 4-PS3-4:	

	 A front door does not have an alarm. Any alarm that is added needs to be heard in the back hallway. A person hiking on a hot day needs to take a fan to stay cool. The fan must be small so that it does not add to the weight of the hiker's pack but must also last the entire hike. The water in a house is heated with electricity purchased from a power company. A decision is made to instead heat the water using electricity generated with solar panels on the roof. The water heater must heat enough water to meet the needs of the home but the cost of installation and/or maintenance cannot exceed the family's budget. A motor is added to a toy car for a race. The motor must be able to move the car across a room at a high speed. 		
	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1.	Express or complete a causal chain explaining how energy can be transferred via electric current to produce light, sound, heat, and/or motion. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains		
2	Identify evidence supporting the information of source time that is supported in a source chain.		
Ζ.	identify evidence supporting the inference of causation that is expressed in a causal chain.		
3.	Use an explanation to predict how the motion, sound, heat, or light of an object changes, given a change in electrical energy—or, how the expression of energy will change, given a change in the conversion of stored energy.		
4.	Identify or assemble from a collection, including distractors, the relevant aspects of the problem that given design solutions, if implemented, will resolve/improve. The design solution must convert energy from one form to another within the content limits.		
5.	 Using given information, select or identify constraints that the device that converts energy from one form to another must meet OR criteria against which it should be judged. 		
6.	Using given information, design, propose, illustrate, assemble, test, or refine a potential device (prototype) that converts energy from one form to another.		

Performance	4-PS4-1		
Expectation	Develop a model of waves to describe patterns in terms of amplitude and wavelength, and that waves		
	can cause objects to move.		
Dimensions	Developing and PS4.A: Wave Properties Patterns		
	Using Models• Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach.• Similarities differences patterns ca used to sor classify, an analyze sim rates of che matural peaks).• Similarities differences patterns ca used to sor classify, an analyze sim rates of che phenomen	and in be it, d ange for a.	
Clarifications	Clarification Statements		
and Content	• Examples of models could include diagrams, analogies, and physical models using wire to	0	
Limits	illustrate wavelength and amplitude of waves.		
	• Acceptable clusters may include: amplitude and wavelength, motion of an object, or bot	:h.	
	Content Limits		
	 Limited to physically visible mechanical waves. 		
	• Assessment does not include interference effects, electromagnetic waves, non-periodic	waves,	
	or quantitative models of amplitude and wavelength.		
	• Examples of objects being moved by waves are limited to up and down motion. Horizontal		
	motion is above grade level due to the other factors involved.		
	 Don't directly reference energy. Energy is addressed in 4-PS3. 		
	 <u>Students do not need to know</u>: 		
	• Types of waves: sound, light, non-periodic, compression		
	 Particle movement 		
	 Quantitative models 		
	 Behaviors of waves: absorption, reflection, refraction, transmission, interactions with different materials (angle of incidence, amount of reflection or absorption, light being refracted into colors). Reflection is limited to the concept. How waves are reflected and the details of reflection (as well as other behaviors) are covered in MS-PS4-2. 		
	 Wave calculations 		
	 Motion of objects in the ocean due to ocean currents 		
Science	Crest, trough, peak, rate, property, medium, period		
Vocabulary			
Students Are			
Expected to			
Know			
Science	Electromagnetic compression particle transmission colomia your radio your mission in	afrarad	
Science	Electromagnetic, compression, particle, transmission, seismic wave, radio wave, microwave, if	iirared,	
Vocabulary	uiu aviolei, gamma rays, x-rays, angle of incidence, concave, convex, diffraction, constructive	un d	
Students Are	interference, destructive interference, resonance, retraction, absorption, reflection, pitch, sou	Ind	
Not Expected	wave, light wave.		
	Dhonomera		
Contoxt/	Some example phonomena for 4 DS4 1:		
	ן סטווב באמוועוב עוופווטווופוומ וטו אדיסאדיג.		

Phenor	 A boat floating in the ocean is tied to a pier. The boat rises and falls with the waves. Two students hold ends of a rope. One student lifts her end, and then drops it toward the ground. The rope forms a wave that travels from that student to the other student. The sand waves on a windy beach get bigger and more pronounced over time. They are regular and evenly spaced. A surfer riding a wave stays up if she moves along the wave but falls as soon as she stops moving. 		
	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1.	 Select or identify the components of a model that are needed to describe wave behavior, patterns of wave creation, and/or the motion of objects carried on/by waves. Components might include the source, amplitude, frequency, and/or wavelength. 		
2.	2. Manipulate the components of a model to demonstrate properties, processes, and/or events that result in the patterns of wave behavior that are identified in the phenomenon. These patterns of wave behavior can include creation and replication of waves.		
3.	 Describe, select, or identify the relationships among components of a model that describe wave behavior, patterns of wave creation, and/or the motion of objects carried on or by a wave. 		
4.	Given a model of waves, illustrate the way in which the wave changes to yield a given result (more movement, less movement) and/or identify the result based on changes to the wave.		
5.	5. Make predictions about the effects of changes in model components (e.g., energy of wave source, distance from wave source), the amplitude or wavelength of a wave, or motion of objects affected by the wave. Item writer: Do not directly reference the energy of the wave source. Instead, show the speed and size of the object causing the wave, etc.		

Performance	4-PS4-2			
Expectation	Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.			
Dimensions	 Developing and Using Models Develop a model to describe phenomena. 	 PS4.B: Electromagnetic Radiation An object can be seen when light reflected from its surface enters the eyes. 	 Cause and Effect Cause-and-effect relationships are routinely identified. 	
Clarifications and Content Limits	 Content Limits Assessment does not include: knowledge of specific colors reflected and seen; the cellular mechanisms of vision; how the retina works. 			
Science Vocabulary Students Are Expected to Know	cience Energy, light ray, reflection, reflective, surface 'ocabulary itudents Are Expected to Cnow			
Science Vocabulary Students Are Not Expected to Know	ScienceParticle, transmission, angle of incidence, angle of reflection, concave, convex, diffraction, constructive interference, destructive interference, refraction, absorption, wave, field, illuminate diffuse reflection, specular reflection, spectrum, prism.Not Expected to KnowInterference			
		Phenomena		
Context/ Phenomena	 Context/ Phenomena A person can see a cat in the mirror. The cat is otherwise hidden from view. A performance is being watched by a person. Another person stands up and blocks the vi A flashlight is pointed at a door in a dark room. The door is the only object seen in the root The surface of a lake is very still. The reflection of a tree on the bank can be seen on the lake's surface. 			
This Perfo	ormance Expectation and ass	ociated Evidence Statements support the	e following Task Demands.	
		Task Demands		
1. Identify source, t	the components needed to r the object, the path the light	nodel the phenomenon. Components mig follows, and the eye.	ght include the light, the light	
2. Complet entering	mplete an illustration or flow chart that is capable of representing how light reflecting from objects and tering the eye allows objects to be seen. This <u>does not</u> include labeling an existing diagram.			
3. Manipul that act	 Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon. 			
 Make pr light sou illustrati 	Make predictions about the effects of changes in the model, particularly using mirrors, changing positions of light sources, objects, and the eye. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.		g mirrors, changing positions of model components, completing	
5. Identify	missing components, relatio	nships, or other limitations of the model.		
6. Describe from obj	e, select, or identify the relat jects and entering the eye al	ionships among components of a model t lows objects to be seen.	that describe how light reflecting	

This page intentionally left blank.

Performance	4-PS4-3			
Expectation	Generate and compare multiple solutions that use patterns to transfer information.			
Expectation Dimensions Clarifications	Generate and compare m Constructing Explanations and Designing Solutions • Generate and compare multiple solutions to a problem, based on how well they meet the criteria and constraints of the design solution.	 PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. 	 Patterns Similarities and differences in patterns can be used to sort and classify designed products. 	
and Content	Examples of solution	tions could include:		
Limits	 drums sending coded information through sound waves; using a grid of 1's and 0's, representing black and white, to send information about a picture; using Morse code to send text. 			
	Content Limits			
	Students do not need to know:			
	• the different parts of the electromagnetic spectrum (visible, microwave, x-ray, radio			
	wave, etc.);			
	 binary co 	coding or how it works; nt is made up of an electric and magnetic field; rse vs. longitudinal waves:		
	 that light 			
	 o transvers o how info 	rmation gets encoded:		
	 how lifte how diffe like a tele 	erent forms of communicating information work (Morse compone).	ode vs. something	
Science	Amplitude, wavelength, r	eflect, vibrate, vibration, absorb, properties, sound wave,	wave,	
Vocabulary Students Are Expected to Know	communicate, electricity,	. coded, Morse code, digital, store, transfer, convert.		
Science	Light emission, light refra	ction, transmit, wave peaks, light wave, electromagnetic,	frequency,	
Vocabulary	radiation, wave packet, li	ght scattering, light transmission, electric field, magnetic f	ield, photon,	
Not Expected to Know	radio wave, x-ray, binary,	electron, pixel, CCD, transverse, longitudinal.		
		Phenomena		
Context/	Some example phenome	na for 4-PS4-3:		
Phenomena	• In July 2015, the	New Horizons Space Probe flew past Pluto. The space pro	be is tasked with	
	taking detailed pictures of Pluto so that scientists on Earth can study its features. However,			
	the spacecraft ca	n only send sequences of numbers back to Earth.		

	 A man wants to send an urgent message to his wife who is a long distance away. It would take too long to drive to his wife and deliver the message himself. The only way he can communicate is through an electrical wire that is set up between the two locations. Two people want to communicate a number 1 through 10 over a large distance. They have no telephones or other means of communication. They are close enough that they can see or hear each other, however, a river separates them so they cannot reach each other. Two people want to communicate over a large distance. However, the power is out and so they cannot use the telephone. All they have is a string that is stretched between their two houses. Attached to the end of each string is a metal can. The messages they want to be able to send consists of numbers 1 through 10. 				
This Perfor	mance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands				
 Articulate may entai 	, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This I sorting relevant from irrelevant information or features.				
2. Express of include in completin	^r complete a causal chain explaining how each pattern is used to transmit information. This may dicating directions of causality in an incomplete model such as a flow chart or diagram, or g cause-and-effect chains.				
3. Identify e	vidence supporting the inference of causation that is expressed in a causal chain.				
4. Use an ex information	planation to compare the two solutions and select which one is better for the transmitting of on.				
5. Describe,	identify, and/or select information needed to support an explanation.				
Performance	4-LS1-1				
---	--	--	---	--	--
Expectation	Construct an argument that plants and animals have internal and external structures that function				
	to support survival, growth, behavior, and reproduction.				
Dimensions	 Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model. 	 LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. 	 Systems and System Models A system can be described in terms of its components and their interactions. 		
Clarifications	Clarification Statements				
and Content Limits	 Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin. 				
	Content Limits				
	 Assessment is limited The student does not mitochondria, the Ge <u>The student does not</u> reproductive system, 	d to macroscopic structures within pla t need to know about cellular structu olgi apparatus or the endoplasmic rea <u>t need to know:</u> about organ systems , or nervous system.	ant and animal systems. res like the nucleus, ticulum. like the circulatory system,		
Science Vocabulary Students Are Expected to Know	Brain, body, flow, flower, he petal, predator, prey, roots,	art, lung, muscle, movement, grasp, skin, stem, stomach, temperature	habit, moisture, organization,		
Science Vocabulary Students Are Not Expected to Know	Cell, detect, response, body vertebrate, multicellular, stir cells.	I, detect, response, body plan, elastic, external, intellectual, internal, invertebrate, organ, tebrate, multicellular, stimulus, tissue, enzyme, xylem, phloem, parenchyma, and cambium ls.			
	1	Phenomena			
Context/ Phenomena	 Some example phenomena for 4-LS1-1: In a field of grass, a butterfly lands on one of the only red poppy flowers in sight. A manta ray has a flat circular body. Its fins spread out like wings from its body. A pelican can hold up to 3 gallons of water in its pouch. A student sees a hollow, brown copy of a cicada insect attached to the bark of a tree. 				
This Perfor	This Performance Expectation and associated Evidence Statements support the following Task Demands.				
		Task Demands			
1. Identify particula reprodu	evidence or patterns in the da ar structure of an organism an ction.	ta that support inferences and/or de d a function that supports survival, g	termine relationships between a rowth, behavior, and		
 Understand and generate simple bar graphs or tables to document patterns, trends, or relationships between a particular structure of an organism and a function that supports survival, growth, behavior, and reproduction. 			s, trends, or relationships survival, growth, behavior, and		

3.	Sort observations/evidence into those that appear to support or not support an argument.
4.	Based on the provided data, identify or describe a claim regarding the relationship between a structure of an organism and a function that supports survival, growth, behavior, and reproduction.
5.	Summarize or organize given data or other information to support or refute a claim regarding an organism's structure and its function.

6. Sort, tabulate, classify, separate, and/or categorize relevant from irrelevant information regarding an organism's structure and its function.

Performance	4-LS1-2			
Expectation	Use a model to describe that animals receive different types of information through their			
	senses, process the information in their brain, and respond to the information in different ways.			
Dimensions	Developing and Using	LS1.D: Information Processing	Systems and System Models	
	Models	 Different sense receptors are specialized 	 A system can be described 	
	 Use a model to test 	for particular kinds of information, which	in terms of its components	
	interactions	may be then processed by the animal's	and their interactions.	
	concerning the	brain. Animals are able to use their		
	functioning of a	perceptions and memories to guide their		
	natural system.	actions.		
Clarifications	Clarification Statements			
and Content		ystams of information transfor		
Limits		ystems of mornation transfer.		
	Content Limits			
	Assessment doe	s not include the mechanisms by which the b	rain stores and recalls	
	information or t	he mechanisms of how sensory receptors fun	ction.	
Science	Lens, vision, hearing, mu	iscle, ear, middle ear, outer ear, inner ear, ea	rdrum, response, habitat, eye,	
Vocabulary	lens, memory			
Students Are				
Expected to				
Know				
Science	Sensory, brain, cells, reti	na, pupil, saliva, salivary gland, vibration, cor	nea, iris, brainstem, consumer.	
Vocabulary	nerve, optic nerve, nerve	e cell, nerve tissue, nerve impulse, connecting	a nerve, nerve fiber, organ	
Students Are	system, reflex, reflex act	ion, reaction time, cue.		
Not Expected				
to Know				
		Dhanamana		
Context/	Some example phenome	ena for 4-l \$1-2:		
Phenomena	A bear cub in the	e woods cries out. Its mother immediately ru	ns toward it.	
	A deer walks in t	he woods. It turns suddenly and moves off in	a different direction. A few	
	minutes later, a	skunk appears from the bushes.		
	• A cat sits on a st	one wall. A mouse appears at the base of a ne	earby tree. The cat springs	
	after the mouse			
	 A hawk flies over 	rhead. Suddenly, it dives toward the tall grass	s. A moment later, it returns to	
	the sky, a snake	in its claws.		
This Performance Expectation and associated Evidence Statements support the following Task Demands.				
1 Colort -	r identify from a collection	I ask Demanas	ants needed to model the	
I. Select O	enon Components might	represent organ systems or parts of a system	ents needed to model the	
processi	ng of sensory information			
2. Assembl	le or complete, from a col	ection of potential model components, an illu	ustration or flow chart that is	
capable	of representing the flow a	nd/or processing of sensory information in a	n animal. This <u>does not</u> include	
labeling	labeling an existing diagram.			

Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.*
 Given models or diagrams of the flow and/or processing of sensory information in an animal, identify responses to sensory inputs and how they change in each scenario OR identify the properties of organs and/or organ systems that allow animals to respond to sensory information.*
 Identify missing components, relationships, or other limitations of a model that shows the flow and/or processing of sensory information in an animal.
 Describe, select, or identify the relationships among components of a model that describe how sensory information is processed or explain how an animal responds to sensory inputs.

Performance	4-ESS1-1			
Expectation	Identify evidence from patterns in rock formations and fossils in rock layers to support an			
	explanation for changes in a landscape over time.			
Dimensions	Constructing	ESS1.C: The History of Planet Earth	Patterns	
	Explanations and	 Local, regional, and global patterns of rock 	• Patterns can be	
	Designing Solutions	formations reveal changes over time due to	used as evidence	
	 Identify the evidence 	Earth forces, such as earthquakes. The presence	to support an	
	that supports particular	and location of certain fossil types indicate the	explanation.	
	points in an explanation.	order in which rock layers were formed.		
Clarifications	Clarification Statement			
and Content	 Examples of eviden 	ce from patterns could include rock layers with marin	e shell fossils above	
Limits	rock layers with pla	nt fossils and no shells, indicating a change from land	to water over time,	
	and a canyon with o	different rock layers in the walls and a river in the bot	tom, indicating that	
	over time a river cu	t through the rock.		
	Content Limits			
	Assessment does no	ot include specific knowledge of the mechanism of ro	ck formation or	
	memorization of sp	ecific rock formations and layers.		
	Assessment is limite	ed to relative time.		
	 Assessment does no 	ot include earthquakes—the clarification statement for	ocuses on	
	geomorphology and	l landscape change through time. The focus is not on	tectonics, despite	
	its mention in the DCI.			
Science	Weathering, erode, glacier,	climate, fossil, landscape, shell, river, mountain, cany	von, deposit,	
Vocabulary	marine.		, , ,	
Students are				
Expected to				
Know				
Science	Rock strata, ocean basins, glaciation, watersheds, geological, mountain chains, igneous rock,			
Vocabulary	metamorphic rock, sedimentary rock, terrestrial, aquatic.			
Students are				
Not Expected				
to Know				
		Phenomena		
Context/	Sample phenomena for 4-E	SS1-1:		
Phenomena	The rock walls on be	oth sides of the Grand Canyon contain layers with ma	rine fossils,	
	interspersed with la	yers containing terrestrial fossils.		
	Church Rock, New N	Nexico, is a very dry place far from the sea. However,	exposures of rocks	
	in the area contain	many fossils of marine organisms.		
	Axel Heiberg Island	in the Canadian Arctic is too cold for trees to grow. H	owever,	
	sedimentary rocks of	on the island preserve hundreds of fossil stumps from	large evergreen	
	trees.			
	Sihetun, China, is di	ry and mountainous. Sedimentary rocks exposed in th	ie area preserve	
	thousands of fish fossils. These sedimentary rocks are sandwiched between lava flow rocks.			
	There are no active volcanoes in this part of China.			
This Perfe	ormance Expectation and ass	ociated Evidence Statements support the following Ta	ask Demands.	
		Task Demands		

- 1. Describe, identify, and/or select evidence from patterns of rock formations and/or patterns of fossils in rock layers to support the explanations of changes in the landscape over time.
- 2. Express or complete a causal chain explaining changes in patterns of fossils in rock layers.
- 3. Identify patterns of rock formations and/or patterns of fossils in rock layers.

Performance	4-ESS2-1			
Expectation	Make observations and/or measurements to provide evidence of the effects of weathering or the			
	rate of erosion by water, ice, wind, or vegetation.			
Dimensions	Planning and Carrying Out Investigations	ESS2.A: Earth Materials and SystemsRainfall helps to shape the land and	• Cause and Effect	
	 Make observations and/or 	affects the types of living things found	relationships are	
	measurements to produce	in a region. Water, ice, wind, living	routinely identified,	
	data to serve as the basis for	organisms, and gravity break rocks,	tested, and used to	
	evidence for an explanation	soils, and sediments into smaller	explain change.	
	of a phenomenon.	particles and move them around.		
Clarifications	Clarification Statement			
and Content	Examples of variables to	o test could include: angle of slope in the do	wnhill movement of	
Limits	water, amount of veget	ation, speed of wind, relative rate of deposi	tion, cycles of freezing	
	and thawing of water, c	cycles of heating and cooling, and volume of	water flow.	
	Content Limits			
	 Students aren't expected 	ed to know the flow of energy that causes th	e phenomena.	
	Assessment is limited to	o one form of erosion.		
	Assessment does not in	clude chemical erosion.		
	<u>Students do not need to</u>	<u>o know</u> : Sedimentation, Earth's interior, crys	tallization, minerals, the	
	rock cycle, dynamic ford	ces, feedback interactions, constructive force	es, or deformation.	
Science	Erosion, freeze, movement, cyc	le, weathering, ocean, sediment, vegetation	, particle, earthquake,	
Vocabulary	volcanoes, thaw.			
Students are				
Expected to				
Know				
Science	composition, slope, continental boundaries, trench, minerals, plate tectonics, topography.			
Students are				
Not Expected				
to Know				
		Phenomena		
Context/	Some example phenomena for	4-ESS2-1:		
Phenomena	 Rocks in the bottom of a often have sharp edges 	a river are usually smooth, but the rocks sitt and corners	ing on the ground nearby	
	Near its start in Colorad	lo, the bed of the North Platte River is cover	ed with boulders. Some	
	five hundred miles awa	y in Nebraska, the bed of the river is mostly	sand.	
	• New gullies appear in a	gravel driveway after a heavy rain.		
	Over the course of a sur	mmer there is a series of major storms. At th	ne end of the season, the	
	channel of a small strea	m running through a grassy park is significar	ntly wider than it was	
	before the storms.			
This Perf	I ormance Expectation and associa	ted Evidence Statements support the follow	ing Task Demands.	
		Task Demands		
1. Identify	the factors that affect weatherin	g or the rate of erosion by water, ice, wind, o	or vegetation.	

- 2. Identify from a list the materials/tools needed for an investigation of how wind affects the factors that affect weathering or the rate of erosion by water, ice, wind, or vegetation.
- 3. Identify, among distractors, the outcome data that should be collected in the investigation.
- 4. Make and/or record observations about how input factors affect relevant outcomes while using fair tests in which variables are controlled.*
- 5. Make or communicate the conclusions from the investigation. Conclusions will be causal relationships.**

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD5 can be used ONLY if used in concert with TD4

Performance	4-ESS2-2			
Expectation	Analyze and interpret data from maps to describe patterns of Earth's features.			
Dimensions	Analyzing and	ESS2.B: Plate Tectonics and Large-Scale System	Patterns	
	Interpreting Data	Interactions	 Patterns can be 	
	 Analyze and 	 The locations of mountain ranges, deep ocean 	used as evidence	
	interpret data to	trenches, ocean floor structures, earthquakes, and	to support an	
	make sense of	volcanoes appear in patterns. Most earthquakes	explanation.	
	phenomena using	and volcanoes occur in bands that are often along		
	logical reasoning.	the boundaries between continents and oceans.		
		Major mountain chains form inside continents or		
		near their edges. Maps can help locate the different		
		land and water features areas of Earth.		
Clarifications	Clarification Stateme	ents		
and Content	Maps can inc	lude topographic maps of Earth's land and ocean floor, a	s well as maps of the	
Limits	locations of n	nountains, continental boundaries, volcanoes, and earth	quakes.	
	Contont Limite			
	Content Linits	act pood to know: the tectonic processes that form Earth	's foaturos	
		the tectoric processes that form earth	i s leatures.	
Science	Farthquake, Farth's s	urface crust volcanic eruption region barrier global lo	cal physical	
Vocabulary	characteristic. ocean.	force, landscape, mountain chain, mountain range, cont	inental boundary. sea	
Students Are	floor, collide, propert	ies, ocean trench, pressure, topographic map.	,,	
Expected to				
Know				
Science	Geologic, impact, magnitude, frequency, sediment deposition, ancient, ocean basin, rock layer			
Vocabulary	movement, formation, continental shelf, deform, density, tectonic process, distribution, oceanic			
Students Are	crust, plate boundary	t, plate boundary/collision, seafloor spreading.		
Not Expected				
to Know		Dhonomono		
Contoxt/	Ear this parformance	eventation the phonomena are the patterns of feature	s on mans that the	
Phenomena	student examines Th	expectation, the phenomena are the patterns of realine	atements as shown	
rnenomena	below but the actual	phenomenon in each case is the nattern on the man. If (descriptive	
	statements are used.	writers must be careful not to give the pattern or the po	int of the cluster	
	away to the student.	where must be careful not to give the pattern of the po		
	,			
	Some example pheno	omena for 4-ESS2-2:		
	There are act	ive volcanoes in Alaska. There are no active volcanoes ne	ear Buffalo, New York.	
	(If this staten	nent were to be used to describe the map, then the stude	ents task would have	
	to be someth	ing more than simply pointing out that there are volcand	oes in Alaska and	
	none near Bu	iffalo, such as figuring out that Alaska is closer to a tector	nic plate boundary	
	than is New Y	′ork.)		
	Earthquakes	occur often in western South America. Earthquakes almo	ost never occur on the	
	eastern side (or the continent. (If this statement were to be used to de	scribe the map, then	
	the student's	task would have to be something more than simply poin	iting out that there	
	are earingua	tary lies along the eastern coast of South America)	Lii as nguring out tridt	
		pes are found in a ring around the Pacific Ocean. There a	re fewer found on the	
	edges of the	Atlantic Ocean. (If this statement were to be used to des	cribe the map, then	

	 the students task would have to be something more than simply pointing out that there are many volcanoes around the Pacific and few around the Atlantic, such as figuring out that tectonic plate boundaries surround the Pacific Ocean.) There are no mountain ranges in Kansas. There are many mountains in Washington State. (If this statement were to be used to describe the map, then the students task would have to be something more than simply pointing out that there are mountains in Washington and none in Kansas, such as figuring out that Washington is closer to a tectonic plate boundary than Kansas.) 			
This Perfor	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
	Task Demands			
 Organize, features o 	arrange, or summarize map data and/or symbols to highlight/describe patterns of geological on Earth's surface.**			
2. Generate patterns o	/construct graphs, tables, or assemblages of illustrations and/or labels, of map data that document of geological features on Earth's surface. This may include sorting out distractors.*			
3. Use relati Earth's su	onships identified in the presented map data to predict the location of geological features on rface, such as mountain ranges, volcanoes, earthquake foci, and deep ocean trenches.*			
4. Identify e on Earth's	vidence or patterns in map data that support inferences about the patterns of geological features s surface.*			

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD1 may be used in combination with 2, 3, or 4 for stand-alone development.

Performance	4-ESS3-1			
Expectation	Obtain and combine information to describe that energy and fuels are derived from natural			
	resources and their uses affect the environment.			
Dimensions	Obtaining, Evaluating, and	ESS3.A: Natural Resources	Cause and Effect	
	 Communicating Information Obtain and combine information from books and other reliable media to explain phenomena 	• Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.	 Cause and effect relationships are routinely identified and used to explain change. 	
Clarifications	Clarification Statements			
and Content	Examples of renewable	energy resources could include:		
Limits	 Addition of the first of the fi		a positive light sed to generate energy gy/how wind produces	
Science	Recycle, reuse, coal, habitat, po	llution, dam, population, atmosphere, oil, re	source, fossil fuel,	
Vocabulary	renewable, nonrenewable, con	servation		
Students are				
Expected to				
Know				
Science	Agricultural, biosphere, minera	I, geological, hydrothermal, metal ore, organi	c, deposition,	
Vocabulary	petroleum, derive, extract, natu	iral gas, oil shale, sustainability, tar sand		
Students are				
to Know				
	Phenomena			
Context/	Some example phenomena for	4-ESS3-1		
Phenomena	A pipeline is built to tra	nsport oil from one location to another. As th	e oil moves across the	
	landscape it leaks into a river along the way.			

	 The Three Gorges dam was built along the Yangtze River in China to generate electricity. The Chinese dove tree lives along the Yangtze River. Building the dam affected this tree. Several wind turbines are placed in a field to provide electricity to neighboring areas. To do this, forest land had to be cut down to provide space for the wind turbines. Oil can be used to generate electricity. Oil can be found under the ocean. Seismic waves are used to locate the oil. Because of this, 100 melon head whales were displaced off the coast of Madagascar. 		
Thi	s Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1. Oi tre	ganize and/or arrange (e.g., using illustrations and/or labels), or summarize data/information to highlight ends, patterns, or correlations.		
2. Ex af flc	 Express or complete a causal chain explaining how energy and fuel that are derived from natural resources affect the environment. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.* 		
3. lo	entify evidence supporting the inference of causation that is expressed in a causal chain.*		
4. Id na	entify patterns or evidence in the data that supports inferences about the effects that the usage of certain tural resources has on the environment.		
5. D	escribe, identify, and/or Select information needed to support an explanation.		

Performance	4-ESS3-2			
Expectation	Generate and compare multiple solutions to reduce the impacts of natural Earth processes on			
	humans.			
Dimensions	Constructing	ESS3.B: Natural Hazards	Cause and Effect	
	Explanations and	• A variety of hazards result from natural processes	• Cause and effect	
	Designing Solutions	(e.g., earthquakes, tsunamis, volcanic eruptions).	relationships are	
	 Generate and 	Humans cannot eliminate the hazards but can take	routinely	
	compare multiple	steps to reduce their impacts.	identified,	
	solutions to a problem		tested, and used	
	based on how well	ETS1.B: Designing Solutions to Engineering	to explain	
	they meet the criteria	Problems	change.	
	and constrains of the	• Testing a solution involves investigating how well it		
	design solution	performs under a range of likely condition		
		(secondary)		
Clarifications	Clarification Statements		1	
and Content	Examples of solut	tions could include designing an earthquake resistant bui	Iding and improving	
Limits	monitoring of vol	canic activity.		
	Content Limits			
	Assessment is lim	ited to earthquakes, floods, tsunamis, and volcanic erup	tions.	
Science	Environment, nature, recycle, reuse, coal, habitat, pollution, dam, population, atmosphere, oil,			
Vocabulary	resource, fossil fuel, rene	wable, nonrenewable, conservation		
Students are				
Expected to				
Know				
Science	Agricultural, biosphere, mineral, geological, hydrothermal, metal ore, organic, deposition, petroleum,			
Vocabulary	derive, extract, natural ga	is, oli shale, sustainability, tar sand		
Students are				
Not Expected				
		Dhonomona		
Context/	Engineering performance	expectations are built around meaningful design proble	ms rather than	
Phenomena	nhenomena. In this case	the design problems involve reducing the impact of eart	hauakes floods	
Thenomena	tsunamis and volcanic er	untions on humans. For this performance expectation, the	ne design problem	
	and competing solutions	replace phenomena	ie design problem	
	Example phenomena for	4-ESS3-2:		
	Hurricanes gener	ate high winds. Several building designs are being consid	ered to construct	
	buildings that cou	uld withstand the force of the wind.		
	Eyjafjallajokull is	an active volcano in Iceland. In preparation for future vol	canic activity,	
	several evacuatio	on routes are being considered.		
This Perf	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
		Task Demands		
1. Organiz	e and/or arrange (e.g., usin	g illustrations and/or labels), or summarize data/informa	ation to highlight	
trends,	trends, patterns, or correlations in data regarding human activity and natural hazards.			

	2.	Express or complete a causal chain explaining how humans can reduce the impact of natural hazards.
	3.	Identify evidence supporting the inference of causation that is expressed in a causal chain.
2	4.	Identify patterns or evidence in the data that supports inferences about the ways humans can reduce impacts of natural hazards.
Į	5.	Use an explanation to compare the two solutions and select which one is better for addressing the problem of the impact of natural hazards on humans and explain how well each solution meets the criteria and constraints of the design solution.
(6.	Describe, select, or identify components of competing design solutions.

Performance	5-PS1-1			
Expectation	Develop a model to describe that matter is made of particles too small to be seen.			
Dimensions	Developing and Using Models • Use models to describe phenomena.	 PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. 	 Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large. 	
Clarifications	Clarification Statement	S		
and Content	Examples of evi	dence supporting a model could include adding air	to expand a basketball,	
Limits	compressing ai	r in a syringe, dissolving sugar in water, and evapora	ating salt water.	
	Contout Linsite			
	Content Limits	as not include the stamic scale mechanism of even	oration and condensation	
	• Assessment do	of the unseen particles		
	 Students are ex 	pected to know that matter can neither be destroy	ed nor created.	
		,		
Science	Substance, particle, solid, liquid, gas, vapor, steam, air, phase change, evaporate, boil, condense,			
Vocabulary	freeze, melt, dissolve, mixture, chemical reaction, energy.			
Students Are				
Expected to				
Science	Atom. compound. mole	cule, chemical bond, solution, homogenous, hetero	geneous, colloid, solute.	
Vocabulary	solvent, precipitant, pre	ecipitate, reactant, product, air pressure, law of con	servation of matter.	
Students Are				
Not Expected				
to Know		-		
Contout/	Somo ovampla phanam	Phenomena		
Phenomena	• A hissing sound	can be beard as a bicycle wheel deflates		
	 A sour odor car 	be smelled from milk that has been kept too long	(or expired).	
	When you pum	p air out of a closed bottle that is partially filled wit	h marshmallows, the	
	marshmallows	expand in size. However, when you open the bottle	, the marshmallows	
	shrink back to t	heir original size.		
	When you place a lit match into a glass bottle and a boiled egg is set on the bottle opening			
	the egg eventue	ally gets sucked into the bottle.		
This Perfo	I Drmance Expectation and	associated Evidence Statements support the follow	ving Task Demands.	
	•	Task Demands		
1. Select o	or identify from a collection	on of potential model components, including distrac	ctors, the components	
needed	to model the phenomeno	on. Components might include solid, liquid, or gas p	articles; particles of	
differen	different substances; and representations of particle movement.			

	2.	Assemble or complete — from a collection of potential model components — an illustration, flow chart, or causal chain that is capable of representing the particle nature of matter. This does not include labeling an existing diagram.
	3.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.
4	4.	Make predictions about the effects of changes in the movements of, distances between, or phases of the particles of matter under investigation. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.
ļ	5.	Provided with models or diagrams of the particles of matter under investigation, identify the properties of the particles under investigation and how they change in each scenario. The properties of the particles may include the relative motions of, distances between, and phases of the particles.
	6.	Describe, select, or identify the relationships among components of a model that explains the observed effects of the particle nature of matter.

Performance	5-PS1-2				
Expectation	Measure and graph quantities to provide evidence that regardless of the type of change that occurs				
	when heating, cooling, or	mixing substances, the total weight of matter is	conserved.		
Dimensions	Using Mathematics	PS1.A: Structure and Properties of Matter	Scale, Proportion, and		
	and Computational	 The amount (weight) of matter is conserved 	Quantity		
	Thinking	when it changes form, even in transitions in	 Standard units are used 		
	 Measure and graph 	which it seems to vanish.	to measure and		
	quantities such as		describe physical		
	weight to address	PS1.B: Chemical Reactions	quantities such as		
	scientific and	 No matter what reaction or change in 	weight, time,		
	engineering questions	properties occurs, the total weight of the	temperature, and		
	and problems.	substances does not change.	volume.		
Clarifications	Clarification Statements				
and Content	Examples of react	tions or changes could include mixing, dissolving.	, and phase changes		
Limits	that form new su	bstances.			
	Content Limits				
	 Assessment does 	not include distinguishing mass and weight.			
	<u>Students do not</u>	need to know: structure of atoms, specific chemi	cal equations.		
Calanaa					
Science	veight, substance, matte	er, conservation, temperature, mixing, phase cha olid liquid	nge, dissolving, properties,		
Students Are	reaction, particles, gas, si	טוום, ווקעום.			
Expected to					
Know					
Science	Mass atoms molecules rates				
Vocabulary					
Students Are					
Not Expected					
to Know					
		Phenomena			
Context/	Some example phenome	na for 5-PS1-2:			
Phenomena	A cup of water is	taken out of the freezer and left on a counter. A	fter some time, the frozen		
	water meits.	an discolute more sugar than a sup of cold too. h	ut thay both waigh the		
	A cup of not lead same after the m	iving is complete	ut they both weigh the		
	 When mixed tog 	ether, silver nitrate and sodium chloride forms a	white solid that weighs the		
	same as the individual silver nitrate and sodium chloride weighed.				
	When water, bak	ing soda, and calcium chloride are mixed inside a	a freezer bag, the bag gets		
	hot and expands. The expanded freezer bag weighs the same as the ingredients did when				
	they were separa	ite.			
This Dorfs	This Derformance Europtation and accepted Evidence Chaterparts suggest the following Task Derved				
	This Performance Expectation and associated Evidence Statements support the following Task Demands.				
1. Make sir	mple calculations using give	en data to calculate or estimate the total weight	of a substance after		
heating,	heating, cooling, or mixing.				
2 Measure	or graph data that can be	used to calculate or estimate the total weight of	f a substance after heating		
cooling.	or mixing.	asea to calculate of estimate the total weight of	a substance after freatilig,		
······································					

3.	Describe and/or summarize data (e.g., using illustrations and/or labels) to identify/highlight trends, patterns, or correlations concerning the weight of the substances being investigated at the beginning and end of an investigation.
4.	Compile and/or select, from given information, the particular data needed for a specific inference about the total weight of substances. This can include sorting out the relevant data from the overall body of given information.
5.	Select, describe, or illustrate a prediction made by applying the findings from measurements or an investigation.
6.	Use relationships identified in the data to explain that regardless of the type of change, the total weight of matter is conserved.

Performance	5-PS1-3			
Expectation	Make observations and measurements to identify materials based on their properties.			
Dimensions	 Planning and Carrying Out Investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. 	 PS1.A: Structure and Properties of Matter Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) 	 Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. 	
 Clarifications Clarification Statements Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductive thermal conductivity, response to magnetic forces, and solubility. Content Limits Assessment does not include density or distinguishing between mass and weight. Students do not need to know: chemical reaction equations, balancing reaction equations atomic-level processes. 				
Science Vocabulary Students Are Expected to Know	Electric, electrically char substance, absorbency, phase change, dissolve,	lly charged, magnetic, magnetic attraction, conductor, change of state, bency, evaporate, metal, vapor, conduction, relative, conservation of matter, ssolve, react, product		
Science Vocabulary Students Are Not Expected to Know	nce Insulator, element, reaction, boiling point, melting point, molecule, forms of matter, reactant, abulary chemical compound, chemical reaction, atom lents Are Expected now			
		Phenomena		
Context/ Phenomena	 Some example phenomena for 5-PS1-3: Sugar and flour are white powdery substances. Sugar is soluble in water and flour is not. Three mineral crystals sit on a table. The three crystals are all the same color, resembling clear glass. However, they are all different minerals. One of them is quartz, one of them is halite, and the third is calcite. Two nails are on a table. When a magnet is placed over the nails, one of them moves from the table and sticks to the magnet. Two pieces of wood are hit with a hammer. One piece of wood has a depression/dent where the hammer hit it. The other does not have a dent/depression. 			
This Perfor	rmance Expectation and a	ssociated Evidence Statements support the foll Task Demands	owing Task Demands.	

Identify from a list, including distractors, the materials or tools needed to observe or measure properties of matter to identify unknown materials.
 Identify from a list, including distractors, the output data needed to identify or differentiate materials. **
 Make and/or record observations or measurements from the investigation of the properties of materials.*
 Interpret and/or communicate the data from the investigation of the properties of materials.
 Make or communicate conclusions from the investigation of the properties of materials.

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD2 may be used for stand-alone item if used with TD3

Performance	5-PS1-4			
Expectation	Conduct an investigation to determine whether the mixing of two or more substances results in new substances.			
Dimensions	 Planning and Carrying Out Investigations Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials are considered. 	 PS1.B: Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. 	Cause and Effect • Cause-and-effect relationships are routinely identified and used to explain change.	
Clarifications and Content Limits	 ns Clarification Statements Students are not expected to be able to balance chemical equations, but should be able to complete simple mathematical (addition and subtraction) calculations in regard to starting materials and ending materials. Content Limits Students are expected to know that matter is neither destroyed nor created. Students do not need to know: Chemical names, chemical symbols, general balanced equation {reactant + reactant → products}, and isotopes, specific chemical reaction types (e.g. oxidation, reduction, decomposition, and combustion). 			
Science Vocabulary Students Are Expected to Know	Matter, substance, particle, chemical property, physical property, mass, volume, density, melting point, boiling point, freezing point, dissolve, flammable, odor, gas, solid, liquid, mixture, chemical reaction, gram(s), physical change, chemical change.			
Science Vocabulary Students Are Not Expected to Know	Reactant, product, atom, molecule, compound, chemical bond, law of conservation of mass, law of conservation of energy, intramolecular attractions, intermolecular attractions, solubility, solvent, solute, precipitant, rate of chemical reaction, acid, base, salt (as an ionic crystal), fusion, fission, homogeneous mixture, heterogeneous mixture, plasma, pH.			
	Phenom	ena		
Context/ Phenomena	 Some example phenomena for 5-PS1-4: A peach shrivels and becomes covered with mold. Over time, one metal changes color when exposed to rainwater. However, another metal exposed to rainwater does not. A bottle partially filled with vinegar sits on a counter. An empty balloon is partially filled with baking soda. When the open end of the balloon is stretched over the bottle top, a hissing/fizzing sound can be heard and the balloon expands. When sugar crystals are added to vinegar in a bowl, the crystals disappear. When crystals or baking soda are added to vinegar in a bowl, the mixture begins to bubble and foam. 			
This Perfo	ormance Expectation and associated Evidence	Statements support the follo	wing Task Demands.	
Task Demands				

1.	Identify from a list, including distractors, the properties that should be tested or the materials/tools needed in an investigation of the physical and chemical properties of the starting and ending substances involved in mixing.
2.	Identify the outcome data that should be collected in an investigation of the physical and chemical properties of the starting and ending substances under investigation.
3.	Make and/or record observations/data about the physical and chemical properties of the substances that are mixed and the substances resulting from the mixture.
4.	Interpret and/or communicate the data from an investigation. This may include identifying/describing trends, patterns, or correlations among observations and data concerning the physical and chemical properties of the beginning and ending substances being investigated.
5.	Explain or describe the causal processes that lead to the observed data.

Performance	5-PS2-1				
Expectation	Support an argument that the	gravitational force exerted by Earth on	objects is directed down.		
Dimensions	Engaging in Argument from	PS2.B: Types of Interactions Cause and Effect			
	Evidence	 The gravitational force of Earth 	 Cause and effect 		
	 Support an argument with 	acting on an object near Earth's	relationships are routinely		
	evidence, data, or a	surface pulls that object toward the	identified and used to		
	model.	planet's center.	explain change.		
Clarifications	Clarification Statement				
and Content	 "Down" is a local des 	scription of the direction that points tow	ward the center of the spherical		
Limits	Earth.				
	Content Limits				
	 Assessment does not 	t include mathematical representation of	f gravitational force.		
	 Study of gravity is lim 	ited to gravity on Earth.			
	<u>Students do not nee</u>	<u>d to know</u> : Calculations for weight (we	ight = mass • gravity), free fall,		
	terminal velocity, we	ightlessness, air resistance, friction, blac	k holes, inertia, Newton's law of		
	universal gravitation,	vacuum.			
Science	Sun, gravity, space, flow, mag	net, period (time), charge, Earth's rotati	on, solar system, spherical,		
Vocabulary	exert, transfer, mass, orbital,	mass, volume			
Students are					
Expected to					
Know	אסר – – – – – – – – – – – – – – – – – – –				
Science	Attractive, direction of force, direction of motion, field, linear, nonlinear, gravitational energy,				
Vocabulary	gravitational field, magnetic f	ield, permeate.			
Students are					
Not Expected					
to know		Dhananana			
		Phenomena			
Context/	Sample phenomena for 5-PS2	-1: 			
Phenomena	A nard rubber ball dro	opped in a pool fails more slowly than th	e same ball dropped on land.		
	A feather released or	top of a cliff on a breezy day seems to f	ly away, while a similar feather		
	dropped on flat groui	nd on a breezy day lands on the ground.			
	A small piece of clays	set on the top of a globe stays in place, b	ut when you put it on the		
	bottom of the globe i	t drops off. A piece of clay put at the rea	i north pole stays in place, and		
	also stays in place on	the real south pole.			
	A basketball files in al	n arc before going through the basket.			
This Dorf	ermanes Expectation and acce	nisted Evidence Statements support the	following Tack Domanda		
This Performance Expectation and associated Evidence Statements support the following Task Demands.					
1 Cantaba					
1. Sort obs	ervations into those that appea	ar to support competing (given) argumen	its, or into those that support,		
contradi	contradict, or are not relevant to a given argument. Observations are from animations, simulations, or other				
given ma	given material.				
2. Sort, tab	pulate, classify, separate, and/ (or categorize relevant from irrelevant evi	dence (observations) or data.		
3. Select fr	om a given collection additiona	I relevant observations that would help	distinguish between competing		
argumer	nts or the veracity of a single ar	gument.			

4.	Select, identify, or describe apparent counterexamples to a supported argument.
5.	Identify from a given collection or explain in writing flaws in observation that lead to an apparent counterexample, or explain the counterexample in terms of grade-level appropriate properties gravity, or other simple forces from earlier grade levels.
6.	Sort statements into categories such as facts, reasonable judgments based on available facts, and speculation.
7.	Clearly articulate the evidence supporting and contradicting an argument, noting how the evidence supports or contradicts the argument (hand scored).*
8.	Predict outcomes when properties or proximity of the objects are changed, given the inferred cause and effect relationships. This can be done by describing outcomes, or selecting or identifying outcomes from lists.

Performance	5-PS3-1				
Expectation	Use models to describe that energy in animals' food (used for body repair, growth, motion, and to				
	maintain body warmth) was once energy from the sun.				
Dimensions Developing a		PS3.D: Energy in Chemical Processes and Everyday Life	Energy and		
	Using Models	• The energy released [from] food was once energy from	Matter		
	 Use models to 	the sun that was captured by plants in the chemical	 Energy can be 		
	describe	process that forms plant matter.	transferred in		
phenomena.			various ways		
		LS1.C: Organization for Matter and Energy Flow in	and between		
		Organisms	objects.		
		• Food provides animals with the materials they need for			
		body repair and growth and the energy they need to			
		maintain body warmth and for motion. (secondary)			
Clarifications	Clarification State	ments			
and Content	Examples	of models could include diagrams and flow charts.			
Limits		5			
	Content Limits				
	Assessment	nt does not include photosynthesis.			
	<u>Students o</u>	do not need to know: photosynthesis equation			
Science	Enorgy matter tr	ansfor light			
Vocabulary	Energy, matter, the	ansier, light			
Students are					
Expected to					
Know					
Science	Photosynthesis, m	etabolism, atoms, chemicals, reaction, radiation			
Vocabulary					
Students are					
Not Expected					
to know		Dhenomena			
Context/	Some example ph	enomena for 5-PS3-1:			
Phenomena	Cows eat	grass that grew in the sun.			
	Termites eat the wood in trees.				
	Caterpillars eat leaves and grow big.				
Koalas mainly eat eucalyptus leaves.					
This Performance Expectation and associated Evidence Statements support the following Task Demands.					
Iask Demands					
model need to describe the flow of energy among plants, animals, and the sun					
2 Assemb		del representing the flow of energy among plants, animals, a	nd the sun		
2. Assemb	ie of complete a mo	der representing the now of energy among plants, animals, al			
3. Manipu	late the component	s of a model to demonstrate properties, processes, and/or ev	ents that result in		
the flow	of energy among p	lants, animals, and the sun, including the relationships of orga	anisms and/or the		
cycles o	r energy and/or mat	ter.			

- 4. Articulate, describe, illustrate, select, or identify the relationships among components of a model that describe the movement of matter among plants, animals, and the sun.
- 5. Make predictions about the effects of changes in model components including the substitution, elimination, or addition of energy and/or an organism and the result.

This page intentionally left blank.

Performance	formance 5-LS1-1					
Expectation Support an argument that plants get the materials they need for growth chiefly from air and water.						
Dimensions	 Engaging in Argument from Evidence Support an argument with evidence, data, or model. 	ng in Argument from iceLS1.C: Organization for Matter and Energy Flow in Organisms 				
Clarifications and Content Limits	 Clarification Statements Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil. Content Limits Assessment does not include photosynthesis or the photosynthesis reaction equation. Students should know that plants carry out photosynthesis for energy, but they do not need to know the specifics of the process or equation. 					
Science Vocabulary Students Are Expected to Know	Organism, algae, atmosphere, consumer, cycle, matter, product, transport, chemical, convert, transfer, energy flow, flow chart, conservation, nutrients.					
Science Vocabulary Students Are Not Expected to Know	Plant structure, producer, chemical process, carbon, carbon dioxide, aerobic, anaerobic, molecule, sugars, photosynthesis					
		Phenomena				
Context/ Phenomena	 Some example phenomena for 5-LS1-1: A neoregelia plant sits on the branch of a much larger kapok tree in the Cloud Forest of South America. A plant grows in a classroom and the students weigh the soil every day. The weight of the soil does not change over time but the plant continues to grow. Spanish moss hangs from the branches of a live oak tree in the swamps of Louisiana. Strawberries sold in a supermarket were grown inside of a greenhouse without soil. 					
This Perfo	prmance Expectation and assoc	iated Evidence Statements support the follow	ving Task Demands.			
	Task Demands					
1. Sort obs contradi given ma	 Sort observations into those that appear to support competing (given) arguments, or into those that support, contradict, or are not relevant to a given argument. Observations are from animations, simulations, or other given material. 					
2. Sort, tab	2. Sort, tabulate, classify, separate, and/or categorize relevant from irrelevant evidence (observations) or data.					
3. Select fr competi	om a given collection additionand a given collection additionand and a given the veracity o	al relevant observations that would help disting f a single argument.	nguish between			
4. Select, identify, or describe apparent counterexamples to a supported argument.						

5. Identify from a given collection—or explain in writing—flaws in observation that lead to an appare				
	counterexample, or explain the counterexample in terms of grade-level appropriate properties of plant			
	growth.			
6.	Sort statements into categories such as facts, reasonable judgments based on available facts, and speculation.			
7.	Articulate the evidence supporting and/or contradicting an argument that plants chiefly need air and water for growth.			

Performance	5-LS2-1		
Expectation	Develop a model to describe the movement of matter among plants, animals, decomposers		
	environment.		
Dimensions	Developing and Using Models • Develop a model to describe phenomena.	 LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plant parts and animals) and therefore operate as "decomposers." Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases and water from the environment and release waste matter (gas liquid or solid) back into the 	Systems and System Models • A system can be described in terms of its components and their interactions.
		environment	
Clarifications and Content Limits	 Clarification Statements Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and Earth. Content Limits 		
	• <u>Assessi</u>	<u>nent does not include</u> : molecular explanations.	
Science Vocabulary Students Are Expected to Know	Organism, bacto products, relation	eria, fungus, algae, gas, nutrients, producer, consumer, decompose onship, waste, recycle, species, balance	er, cycle, conserve,
Science Vocabulary Students Are Not Expected to Know	Chemical proce photosynthesis	ss, reaction, molecule, carbon, carbon dioxide, oxygen, sugar, aerc	bbic, anaerobic,
	•	Phenomena	
Context/ Phenomena	 Some example phenomena for 5-LS2-1: Insects in a terrarium only survive when bacteria and plants are present. A new fish tank must rest for 2–3 weeks with water before introducing fish or the fish die. Under a microscope, a sample of soil contains many bacteria, but a sample of desert sand does not. Farmers put fish in stock tanks to keep them clean. 		

	This Performance Expectation and associated Evidence Statements support the following Task Demands.						
	Task Demands						
1.	Select or identify from a collection of potential model components, including distractors, the parts of a model needed to describe the movement of matter among plants, animals, decomposers, and the environment.*						
2.	Manipulate the components of a model to demonstrate properties, processes, and/or events that result in the movement of matter among plants, animals, decomposers, and the environment, including the relationships of organisms and/or the cycle(s) of matter and/or energy.						
3.	Articulate, describe, illustrate, select, or identify the relationships among components of a model that describe the movement of matter among plants, animals, decomposers, and the environment.						
4.	Make predictions about the effects of changes in model components, including the substitution, elimination, or addition of matter and/or an organism and the result.						

Performance	5-ESS1-1						
Expectation	Support an argument that the apparent brightness of the sun and stars is due to their relative						
	distances from Earth.						
Dimensions	Engaging in Argument	ESS1.A: The Universe and Its Stars	Scale, Proportion, and				
	from Evidence	 The sun is a star that appears larger 	Quantity				
	 Support an argument 	and brighter than other stars because	 Natural objects exist from 				
	with evidence, data, or	it is closer. Stars range greatly in their	the very small to the				
	a model.	distance from Earth.	immensely big.				
Clarifications	Content Limits		•				
and Content	Assessment is limit	ted to relative distances, not sizes, of stars	5.				
Limits	Assessment does	not include other factors that affect appa	arent brightness (such as stellar				
	masses, age, stage	, etc.).					
	Assessment does r	ot include absolute brightness.					
	<u>Students do not ne</u>	ed to know:					
	 Specific state 	ars and their names.					
	 Luminosity 	y and how that is affected by the size/age	of a star.				
	 Flux or how to calculate it. 						
Science	Space, planet, sun's size, se	olar system, moon, burn, star brightness, c	constellation, galaxy, visible,				
Vocabulary	astronomical.						
Students Are							
Expected to							
Know							
Science	Lunar phase, eclipse, celes	tial, mass, comet, light year, astronomical	unit, emit, interstellar, fission,				
Vocabulary	fusion, radiation, spectrum, star size, star composition, star formation, star types, luminosity, flux.						
Students Are							
Not Expected							
to Know							
Cantaut	Come average above a	Phenomena					
Context/	Some example phenomena	a TOR 5-ESSI-1:					
Phenomena	Most stars cannot	be seen during the daytime but can be see	en at night.				
• The sun is never seen at the same time as other stars in the sky.			SKY.				
	Alpha Centauri A is	s larger than the sun but does not look as i	oright in the sky.				
	 Street lights that a 	re farther away from you look dimmer.					
This Dorfs		conisted Evidence Statements support the	following Task Domands				
	ormance Expectation and ass	Task Domands	Tollowing Task Demands.				
1 Organiz		Idsk Definitions	highlight trands pattorns or				
I. Organize	ions in how the brightness o	f stars is based on their relative distance f	rom Earth *				
correlati	ons in now the prightness o						
2. Generat	e/construct graphs, tables, o	or assemblages of illustrations and/or labe	ls of data that document				
patterns, trends, or correlations in how the brightness of stars is based on their relative distance from Earth.							
This may include sorting out distractors.*							
3. Describe, identify, and/or select information needed to support an explanation.*							
4. Use relationships identified in the data to predict the distance of a star depending on its brightness, or vice							
versa.*							

5. Identify patterns or evidence in the data that supports inferences about how the brightness of stars depends on their relative distance from Earth.

*denotes those task demands which are deemed appropriate for use in stand-alone item development

This page intentionally left blank.

Performance	5-ESS1-2						
Expectation	Represent data in graphical displays to reveal patterns of daily changes in length and direction of						
	shadows, day and night, a	and the seasonal appearance of some stars in the ni	ght sky.				
Dimensions	Analyzing and	ESS1.B: Earth and the Solar System	Patterns				
	Interpreting Data	• The orbits of Earth around the sun and of the	 Similarities and 				
	 Represent data in 	moon around Earth, together with the rotation	differences in				
	graphical displays (bar	of Earth about an axis between its North and	patterns can be used				
	graphs, pictographs,	South poles, cause observable patterns. These	to sort, classify,				
	and/or pie charts) to	include day and night; daily changes in the	communicate, and				
	reveal patterns that	length and direction of shadows; and different	analyze simple rates				
	indicate relationships.	positions of the sun, moon, and stars at	of change for natural				
		different times of the day, month, and year.	phenomena.				
Clarifications	Content Limits						
and Content	 Examples of patt 	erns could include the position and motion of Earth	with respect to the sun				
Limits	and selected star	s that are visible only in particular months.					
	While the names	of celestial objects, stars, or constellations can be in	ncluded, students are				
	not expected to i	dentify them.					
	Objects to be use	ed to assess this PE are limited to the sun, Earth's me	oon, Earth, and				
	stars/constellatio	ons visible in Earth's night sky.	, ,				
	"Positions of the	moon" refers to its location in Earth's sky and not it	s appearance (phase).				
	 Assessment does 	not include cause of seasons, lunar phases, or the r	position of the sun in				
	the sky througho	ut the vear.					
Science	Circular motion, universe	, Earth's rotation, galaxy, axis, solar system, Milky V	Vay, constellation,				
Vocabulary	moon phases, lunar astro	nomical, orbit, tilt, annual, rotation, revolution.	-,, ,				
, Students Are							
Expected to							
Know							
Science	Eclipse, celestial, comet,	light year, astronomical unit, stellar.					
Vocabulary							
Students Are							
Not Expected							
to Know							
		Phenomena					
Context/	Some example phenome	na for 5-ESS1-2:					
Phenomena	The shadow cast	by a sundial changes position and size throughout t	he day.				
	A constellation th	nat is viewed right above someone's house at 8:00 p	.m. one night can no				
	longer be seen at 8:00 p.m. in a few months.						
 The sun is seen in the sky only during the day 							
	 It gets dark out a 	fter the sun goes below the horizon.					
This Perfo	prmance Expectation and a	ssociated Evidence Statements support the following	ng Task Demands.				
Task Demands							
1. Organize	e, arrange (e.g., using illust	rations and/or labels). or summarize data to highligh	ht trends, patterns, or				
correlations in how the data changes over time.*							
2. Generate/construct graphs, tables, or groups of illustrations and/or labels of data that document natterns							
trends. o	or correlations in how the c	data change over time. This may include sorting out	distractors.*				
trends, or correlations in now the data change over time. This may include solving out distractors.							

- 3. Use relationships identified in the data to predict whether or not the pattern will continue OR how the data will look at some time in the future.*
- 4. Identify patterns or evidence in the data that supports inferences about the phenomena.

Performance	5-ESS2-1						
Expectation	Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or						
	atmosphere inte	eract.					
Dimensions	Developing	ESS2.A: Earth Materials and Systems	Systems and				
	and Using	 Earth's major systems are the geosphere (solid and molten 	System Models				
	Models	rock, soil, and sediments), the hydrosphere (water and ice),	 A system can 				
	 Develop a 	the atmosphere (air), and the biosphere (living things,	be described				
	model using	including humans). These systems interact in multiple ways to	in terms of its				
	an example	affect Earth's surface materials and processes. The ocean	components				
	to describe a	supports a variety of ecosystems and organisms, shapes	and their				
	scientific	landforms, and influences climate. Winds and clouds in the	interactions.				
	principie.	notterns of weather					
		patterns of weather.					
Clarifications	Clarification Sta	tements					
and Content	 Example 	es could include the influence of the ocean on ecosystems, land	form shape, and				
Limits	climate;	the influence of the atmosphere on landforms and ecosystems thro	ough weather and				
	climate;	and the influence of mountain ranges on winds and clouds in the a	itmosphere.				
	The geo	sphere, hydrosphere, atmosphere, and biosphere are each a syster	n.				
	Contont Lineite						
Content Limits							
	• A3363311						
Science	core, mantle, cru	ust, solid, liquid, gas, vapor, tundra, boreal forest, deciduous forest	, grassland,				
Vocabulary	desert, savannal	h, tropical rainforest, freshwater, marine, high pressure, low pressu	ire, currents,				
Students are	circulation						
Expected to							
Know							
Science	troposphere, str	atosphere, mesosphere, thermosphere, ionosphere, chaparrai					
Students are							
Not Expected							
to Know							
	1	Phenomena					
Context/	Some example p	henomena for 5-ESS2-1:					
Phenomena	The land	l area found on the beaches around Nantucket Sound in 2016 were	about three times				
	the land area in the same location in 1984.						
	 In 2016, Tucson, Arizona received more rain between June and September than Yuma, 						
	 The amore 	nut of carbon dioxide in the atmosphere measured at Mauna Loa	Observatory in				
	April is 3	197 parts per million. The amount measured at the same location the	ne previous				
	September was 2% less.						
	the salt content in the freshwater Biscayne Aquifer in Florida was	50 milligrams per					
	liter. In 2	1997, the salt content of the same water was 1,000 milligrams per	liter.				
This Perfe	rmance Expectati	on and associated Evidence Statements support the following Task	Demands				
Task Demands							
1. Select or identify from a collection of potential model components, including distractors, the components							
needed to model the phenomenon. Components might include labels, text, steps in a process.							

- 2. Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing how the geosphere, biosphere, hydrosphere, and/or atmosphere interact. This <u>does</u> <u>not</u> include labeling an existing diagram.
- 3. Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.
- 4. Make predictions about the effects of changes in the geosphere, biosphere, hydrosphere, or atmosphere on each other. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.
- Given models or diagrams of ways in which the geosphere, biosphere, hydrosphere, and/or atmosphere interact, identify relationships between the spheres and how a change in one causes a change in another.
- 6. Identify missing components, relationships, or other limitations of the model.
| Performance | 5-ESS2-2 | | | |
|----------------|--|---|------------------------------|--|
| Expectation | Describe and graph the amounts of salt water and fresh water in various reservoirs to provide | | | |
| | evidence about the distribution of water on Earth. | | | |
| Dimensions | Using Mathematics and | ESS2.C: The Roles of Water in Earth's | Scale, Proportion, and | |
| | Computational Thinking | Surface Processes | Quantity | |
| | Describe and graph | Nearly all of Earth's available water is in | • Standard units are used | |
| | quantities such as area | the ocean. Most fresh water is in glaciers | to measure and | |
| | and volume to address | or underground; only a tiny fraction is in | describe physical | |
| | scientific questions. | streams, lakes, wetlands, and the | quantities such as | |
| | | atmosphere. | weight and volume. | |
| Clarifications | Content Limits | | | |
| and Content | Assessment is limit | ed to oceans, lakes, rivers, glaciers, ground wa | ter, and polar ice caps, and | |
| Limits | does not include th | e atmosphere. | | |
| | Students will not be | e provided a calculator. | | |
| | | | | |
| Science | Cycle, fresh water, glacial m | novement, global, ground water, moisture, pol | ar ice caps, properties of | |
| Vocabulary | soil, reservoir, soil composi | tion, water capacity, feature, glacial, hydrosph | ere, surface feature, water | |
| Expected to | cycle, wetland. | | | |
| Know | | | | |
| Science | Coastal, crust, internal, distribution, hydrological cycle, percentage | | | |
| Vocabulary | | | | |
| Students are | | | | |
| Not Expected | | | | |
| to Know | | | | |
| Cantout/ | The phone man on far these | Phenomena | | |
| Phenomena | data set(s) to be given in te | rms of natterns or relationships to be found in | the data and the columns | |
| rnenomena | and rows of a hypothetical table presenting the data even if the presentation is not tabular. The | | | |
| | description of the phenomenon should describe the presentation format of the data (e.g., maps. | | | |
| | tables, graphs, etc.). For thi | s performance expectation the phenomena ar | e a set of data on the | |
| | relative volume of water in different reservoirs on Earth using standard units for weight or volume. | | | |
| | | 6 | | |
| | Some example sets of data | for 5-ESS2-2: | | |
| | Wielting ice from th | e Arctic ice cap is currently adding fresh water | to the very salty Arctic | |
| | Melting ice from th | e Greenland Ice Sheet is currently adding fresh | n water to the very salty | |
| | Arctic Ocean. | | water to the very surry | |
| | The Potomac River | in the eastern United States is tidally influence | ed over XX% of its length. | |
| | This tidal influence | from the ocean results in the portion of the riv | ver near the ocean being a | |
| | mixture of salt and | fresh water and the portion of the river far fro | om the ocean being fresh | |
| | water. | | | |
| | Salt water intrusion | i on Cape Cod, Florida, or California. | | |
| This Perfo | rmance Expectation and asso | ociated Evidence Statements support the follo | wing Task Demands. | |
| Task Demands | | | | |
| 1. Illustrate | e, graph, or identify relevant | features or data that can be used to calculate | or estimate relationships | |
| betweer | n the relative volumes of wat | er in different reservoirs on Earth. | | |

Calculate or estimate properties or relationships of the relative volumes of water in different reservoirs on Earth, based on data from one or more sources.
 Compile, from given information, the data needed for a particular inference about the relative volumes of water in different reservoirs on Earth. This can include sorting out the relevant data from the given

information.

Performance	5-ESS3-1			
Expectation	Obtain and combine information about ways individual communities use science ideas to protect the			
	Earth's resources and environment.			
Dimensions	Obtaining, Evaluating, and	ESS3.C: Human Impacts on Earth	Systems and System	
	Communicating	Systems	Models	
	Information	 Human activities in agriculture, 	 A system can be 	
	Obtain and combine	industry, and everyday life have had	described in terms of its	
	information from books	major effects on the land, vegetation,	components and their	
	and/or other reliable	streams, ocean, air, and even outer	interactions.	
	media to explain	space. But individuals and communities		
	to a design problem	resources and environments		
		resources and environments.		
Clarifications				
and Content				
Limits				
Science	Atmosphere, cycle, fresh wat	er, global, ground water, moisture, polar ice	caps, properties of soil, soil	
Vocabulary	composition, water cycle			
Students are				
Expected to				
Science	Coastal crust internal distrik	nution bydrological cycle reservoir glacial n	novement water canacity	
Vocabulary	glacial, hydrosphere, reservoir, feature, surface feature, wetland, percentage			
Students are				
Not Expected				
to Know				
		Phenomena		
Context/	Engineering practices are buil	t around meaningful design problems rather	r than phenomena. For this	
Phenomena	PE, there are 2 phenomena a	nd 2 design problems.		
	Some example phenomena for 5-FSS3-1			
	 In England in 1965, there were about 182 000 bee colonies. By 2010, there were about 			
	83.000 bee colonies.			
	• There is a haze in the	air in Beijing, China's capital city, which mak	tes it hard to see long	
	distances. The haze becomes worse on cold winter days.			
	Some example design problems for 5-ESS3-1:			
	 A company is going to 	o put a new logging road in an area where gr	izzly bears live. The US	
	Forest Service tells th	em that they need to pay attention to where	e they are going to put the	
	road. The path of the	road should be chosen so that it doesn't dis	turb grizzly bear habitat	
	very much.			
	A flower garden to at	tract honeybees is being built. The type and	color of flowers, garden	
	placement, flower pla	acement, and other features are chosen to a	ttract honeybees.	
This Perf	ormance Expectation and asso	ciated Evidence Statements support the follo	wing Task Demands.	
		Task Demands		
1. Identify,	1. Identify, evaluate, combine, organize, and/or communicate information (from texts, illustrations, animations,			
simulati	simulations, tables, or graphs) that is needed to make an informed decision related to human impacts on			
natural systems, solve a particular design problem, or complete a specified task.				

2.	Assemble or complete an illustration, graph, set of labels, or a flow chart that shows how the various pieces of information, which are needed to make an informed decision, solve a particular design problem, or complete a specified task, are interrelated. This <u>does not</u> include labeling an existing diagram.
3.	Identify patterns or evidence in the data that supports inferences about human impacts on natural systems or a particular solution to a design problem or task.
4.	Examine, identify or select positive or negative effects/implications of a community idea or design problem. This would include identifying potential positive or negative effects, especially when dealing with design solutions, and classifying the effects/implications as positive or negative and supporting those classifications with the relevant data.
5.	Formulate a design or make an inference or conclusion, based on identified or combined information, evidence or data related to human impacts on natural systems, solution of a particular design problem, or completion of a specified task.
6.	Evaluate a design or make an inference or conclusion, based on identified or combined information, evidence or data related to human impacts on natural systems, solution of a particular design problem, or completion of a specified task.

Specifications for Middle School

Introduction

This document presents *cluster specifications* for use with the Next Generation Science Standards (NGSS). These standards are based on the Framework for K-12 Science Education. The present document is not intended to replace the standards, but rather to present guidelines for the development of items and item clusters used to measure those standards.

The remainder of this section provides a very brief introduction to the standards and the framework, an overview of the design and intent of the item clusters, and a description of the cluster specifications that follow. The bulk of the document is composed of cluster specifications, organized by grade and standard.

Background on the framework and standards

The Framework for K-12 Science Education are organized around three core dimensions of scientific understanding. The standards are derived from these same dimensions:

- Disciplinary Core Ideas: The fundamental ideas that are necessary for understanding a given science discipline. The core ideas all have broad importance within or across science or engineering disciplines, provide a key tool for understanding or investigating complex ideas and solving problems, relate to societal or personal concerns, and can be taught over multiple grade levels at progressive levels of depth and complexity.
- Science and Engineering Practices: The practices are what students DO to make sense of phenomena. They are both a set of skills and a set of knowledge to be internalized. The SEPs reflect the major practices that scientists and engineers use to investigate the world and design and build systems.
- Cross-Cutting Concepts: These are concepts that hold true across the natural and engineered world. Students can use them to make connections across seemingly disparate disciplines or situations, connect new learning to prior experiences, and more deeply engage with material across the other dimensions. The NGSS requires that students explicitly use their understanding of the CCCs to make sense of phenomena or solve problems.
- There is substantial overlap between and among the three dimensions. For example, the cross-cutting concepts are echoed in many of the disciplinary core ideas. The core ideas are often closely intertwined with the practices. This overlap reflects the nature of science itself. For example, we often come to understand and communicate causal relationships by employing models to make sense of observations. Even within a dimension, overlap exists. Quantifying characteristics of phenomena is important in developing an understanding of them, so employing computational and mathematical thinking in the construction and use of models is a very common scientific practice, and one of the cross-cutting concepts suggests that scientists often infer causality by observing patterns. In short, the dimensions are not orthogonal.

The framework envisions effective science education as occurring at the intersection of these interwoven dimensions: students learn science by doing science—applying the practices through the lens of the cross-cutting concepts to investigate phenomena that relate to the content of the disciplinary core ideas.

Item clusters

Each item cluster is designed to engage the examinee in a grade-appropriate, meaningful scientific activity aligned to a specific standard.

Each cluster begins with a phenomenon, an observable fact or design problem that engages student interest and can be explained, modeled, investigated, or designed using the knowledge and skill described by the standard in question.

What it means to be observable varies across practices. For example, a phenomenon for a performance expectation exercising the *analyze data* practice may be observable through regularities in a data set, while standards related to the *development and use of models* might be something that can be watched, seen, felt, smelled, or heard.

What it means to be observable also varies across grade levels. For example, elementary-level phenomena are very concrete and directly observable. At the high school level, an observation of the natural world may be more abstract--for example, "observing" changes in the chemical composition of cells through the observation of macroscopic results of those changes on organism physiology, or through the measurement of system- or organ-level indications. Content limits refine the intent of the performance expectations and provide limits on what may be asked of items in the cluster to structure the student activity. The content limits also reflect the disciplinary core ideas learning progressions that are present in the K-12 Framework for Science Education.

The task or goal should be explicitly stated in the stimulus or the first item in the cluster: statements such as "In the questions that follow, you will develop a model that will allow you to identify moons of Jupiter," or "In the questions below, you will complete a model to describe the processes that lead to the steam coming out of the teapot." Whereas item clusters have been described elsewhere as "scaffolded," they are better described as providing structure to the task. For example, some clusters begin with students summarizing data to discover patterns that may have explanatory value. Depending on the grade level and nature of the standard, items may provide complete table shells or labeled graphs to be drawn, or may require the student to choose what to tabulate or graph. Subsequent items may ask the student to note patterns in the tabulated or graphed data and draw on domain content knowledge to posit explanations for the patterns.

These guidelines for clusters do not appear separately in the specifications. Rather, they apply to all clusters.

Structure of the cluster specifications

The item cluster specifications are designed to guide the work of item writers and the review of item clusters by stakeholders.

Each item cluster has the following elements:

- The text of the performance expectations, including the practice, core idea, and cross-cutting concept.
- Content limits, which refine the intent of the performance expectations and provide limits of what may be asked of examinees. For example, they may identify the specific formulae that students are expected to know or not know.
- Vocabulary, which identifies the relevant technical words that students are expected to know, and related words that they are explicitly not expected to know. The vocabulary included in both sections (Students are Expected to Know and Students Are Not Expected to Know) were developed after the reviews of standards at the current/preceding grades, the original NGSS documentation, and item writer reference documentation including the Children Writers' Word Book and ED Core Vocabularies in Reading, Mathematics, Science and Social Studies. All vocabulary included in the specifications was reviewed and edited by teacher committees during the specification reviews by states. Of course, the latter category should not be considered exhaustive, since the boundaries of relevance are ambiguous, and the list is limited by the imagination of the writers/reviewers.
- Sample phenomena, which provide some examples of the sort of phenomena that would support effective item clusters related to the standard in question. In general, these should be guideposts, and item writers should seek comparable phenomena, rather than drawing on those within the documents. Novelty is valued when applying scientific practices.
- Task demands comprise the heart of the specifications. These statements identify the types of items and activities that item writers should use, and each item written should be clearly linked to one or more of the demands. The verbs in the demands (e.g., *select, identify, illustrate, describe*) provide guidance on the types of interactions that item writers might employ to elicit the student response. We avoid explicitly identifying interaction types or item formats to accommodate future innovations and to avoid discouraging imaginative work by the item writers. All task demands should be aligned to a minimum of one of the three dimensions (DCI, SEP and CCCs) and across task demands within a cluster, all three dimensions must be addressed.

• For each cluster we present, the printed documentation includes the cluster, the task demands represented by each item, and its linkage to the content, practice and cross-cutting concept identified in the performance expectation.

Item cluster specifications follow, organized by domain and standard.

Performance	MS-PS1-1		
Expectation	Develop models to describe the atomic composition of simple molecules and extended structures.		
Dimensions	Developing and	PS1.A: Structure and Properties of Matter	Scale, Proportion, and
	Using Models	 Substances are made from different types of 	Quantity
	 Develop and/or 	atoms, which combine with one another in	 Time, space, and energy
	use a model to	various ways. Atoms form molecules that	phenomena can be
	predict and/or	range in size from two to thousands of atoms.	observed at various
	describe	 Solids may be formed from molecules, or they 	scales, using models to
	phenomena.	may be extended structures with repeating	study systems that are
		subunits (e.g., crystals).	too large or too small.
Clarifications	Clarification Statem	ents	
and Content	Emphasis is	on identifying elements vs. compounds and their ba	asic units of atoms and
Limits	molecules.		
	Emphasis is	on developing models of molecules that vary in con	nplexity.
	 Examples of 	simple molecules could include ammonia, methano	ol, methane, water, carbon
	dioxide, etc.		
	 Examples of 	molecular-level models could include drawings, 3D	ball and stick structures, or
	computer re	presentations showing different molecules with dif	ferent types of atoms.
	 Examples of 	extended structures could include sodium chloride	or diamonds.
	Content Limits		
	• Assessment	does not include valence electrons and bonding en	argy discussing the ionic
	Assessment does not include valence electrons and bonding energy, discussing the ionic		
	a complex molecule or extended structure is not required		
	 Modelling should be limited to molecules that have only one type of bond, no combination 		
	of bonds: th	e structure of the molecule is easy to model: single	bonded molecules
	 Students are 	a not expected to memorize the atomic characterist	ics of any element
	Students de	not need to know; valence electrons and bending of	and the second
	 <u>Students do not need to know</u>: valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, a complete description of all individual atoms in a sampley molecule or extended structure momerization of atoms found in different. 		
	complex mo	SEDB or geometric arrangements, the difference be	twoon single double and
	triple bondi	service of geometric arrangements, the universities be	a oxidation numbers
	triple bonding, periodic table patterns and how it affects bonding, oxidation numbers,		
	polyaconne i	015.	
Science	Element, compound	, mixtures, homogenous, heterogeneous, pure subs	stances, solution, solvent,
Vocabulary	solute.		
, Students are			
Expected to			
Know			
Science	Valence electrons, subatomic particles such as protons, electrons, neutrons, neutrinos etc., ions,		
Vocabulary	positive or negative	charges, covalent bond, ionic bond.	
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example phen	omena for MS-PS1-1:	
Phenomena			

	 Submarines can stay underwater for months using sea water as a sou Special machines run electricity through large amounts of sea water, if from the water. Water and hydrogen peroxide are both made up of hydrogen and oxy poured on a chunk of CaCO₃, there is no reaction. When hydrogen pe chunk of CaCO₃, it fizzes. Oxygen (O₂) is a gas we breathe to stay alive. Ozone (O₃), also made o unhealthy to breathe. 	rce of oxygen for air. generating oxygen gen. When water is roxide is poured on a only of oxygen atoms, is	
	This Performance Expectation and associated Evidence Statements support the following	g Task Demands.	
	Task Demands		
1.	 Identify or assemble from a collection of potential model components, including distractors, components of a model that describes the structures of atoms, molecules, or extended molecules and/or how they interact, or explains how atoms of the same or different element(s) are arranged in repeated patterns in extended structures. 		
2.	 Describe, select, and/or identify the relationships among components of a model that describes the structures of atoms, molecules, or extended molecules and/or how they interact, or explains how atoms of the same or different element(s) are arranged in repeated patterns in extended structures. 		
3.	Assemble, illustrate, describe, and/or complete a model or manipulate components of the structure of an atom, molecule, or extended molecule and/or how they interact, or how atoms of the same or different element(s) are arranged in repeated patterns in extended molecule.	a model to describe to explain or predict tended structures.	

Performance	MS-PS1-2		
Expectation	Analyze and interpret data on the properties of substances before and after the substances interact		
	to determine whether a chemical reaction has occurred.		
Dimensions	Analyzing and	PS1.A: Structure and Properties of Matter	Patterns
	Interpreting Data	• Each pure substance has characteristic physical and	Macroscopic
	 Analyze and 	chemical properties (for any bulk quantity under given	patterns are
	interpret data	conditions) that can be used to identify it.	related to the
	to determine		nature of
	similarities and	PS1.B: Chemical Reactions	microscopic
	differences in	• Substances react chemically in characteristic ways. In a	and atomic-
	findings.	chemical process, the atoms that make up the original	level structure.
		substances are regrouped into different molecules, and	
		these new substances have different properties from those	
		of the reactants.	
Clarifications	Clarification Stater	nents	·
and Content	Examples of	of reactions could include burning sugar or steel wool, fat rea	cting with sodium
Limits	hydroxide,	and mixing zinc with hydrogen chloride.	
	Content Limits		
	 Assessmen 	t is limited to analysis of the following properties: density, me	lting point, boiling
	point, solul	bility, flammability, and odor.	
	Students are not expected to balance chemical equations or to determine whether a chemical		
	equation is balanced or not.		
	 Students are expected to know that mass/matter is neither destroyed nor created. 		
	Departant product compound matter mass values departs malting ratio balling ratio.		
Science	Reactant, product, compound, matter, mass, volume, density, melting point, boiling point, freezing		
Vocabulary	point, solubility, dis	ssolve, flammability, odor, gas, solid, liquid, chemical bonds.	
Students are			
Expected to			
Science	Collision theory oxidation reduction intramolecular attractions intermolecular attractions		
Vocabulary	collision theory, ox	cipitant limiting reactant excess reactant covalent hand ionic	bond rate of
Students are	solvent, solute, precipitant, limiting reactant, excess reactant, covalent bond, ionic bond, rate of		
Not Expected	reaction, acid, base, sait (as an ionic crystal), tusion, tission, nomogeneous mixture, heterogeneous		
to Know			
		Phenomena	
Context/	For this performan	ce expectation the phenomena are mixtures of substances that	provide sets of
Phenomena	data. Those are the observations and/or measurements concerning the physical and chemical		
	properties of the involved substances before and after mixing that the kids will look at to discover		
	patterns. Below, we enumerate some of the mixtures that might provide the data sets to be		
	analyzed.		
	All phenomenon fo	r this PE should be situations where a chemical reaction is not in	mmediately
	apparent.		
	Some example phe	nomena for MS-PS1-2:	
	Rainwater	can produce stains on car paint. Reports of these stains are mor	e common in the
	Southeastern U.S. than they are in the Midwest.		

	 Portions of marble statues that are exposed to rainwater crack and crumble over time. Portions of marble statues that are sheltered develop a black coating over time. When sugar crystals are added to vinegar in a bowl, the crystals disappear. When crystals of table salt are added to vinegar in a bowl, the mixture begins to bubble and foam. Table sugar exposed to an open flame transforms into a gooey, dark substance. Wood exposed to an open flame transforms into ash. 		
	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1.	1. Organize, arrange, and/or generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations among observations and data concerning the physical		
	and chemical properties of the substances involved. This may include sorting out distractors.		
2.	 Describe and/or summarize data (e.g., using illustrations and/or labels), to identify/highlight trends, patterns, or correlations among observations and data concerning the physical and chemical properties of the beginning and ending substances being investigated.* 		
3.	3. Use relationships identified in the data to predict whether the mixing of substances similar to the ones under study will result in the occurrence of a chemical reaction.		
4.	Identify patterns or evidence in the data that support inferences about any changes that occurred in the microscopic or atomic-level arrangements of the substances involved.*		

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	MS-PS1-3		
Expectation	Gather and make sense of information to describe that synthetic materials come from natural		
	resources and impact society.		
Dimensions	Obtaining, Evaluating, and	PS1.A: Structure and Properties of Matter	Structure and
	Communicating Information	Each pure substance has characteristic	Function
	• Gather, read, and	physical and chemical properties (for any	• Structures can be
	synthesize information	bulk quantity under given conditions) that	designed to serve
	from multiple appropriate	can be used to identify it.	functions by taking
	credibility accuracy and	PS1.B: Chemical Reactions	into account
	possible bias of each	Substances react chemically in	properties of
	publication and methods	characteristic ways. In a chemical process,	different
	used, and describe how	the atoms that make up the original	materials, and how
	they are supported or not	substances are regrouped into different	materials can be
	supported by evidence.	molecules, and these new substances have	shaped and used.
		different properties from those of the	
		Teactalits.	
Clarifications	Clarification Statements		1
and Content	• Emphasis is on natural	resources that undergo a chemical process to for	orm the synthetic
Limits	material.		
	Examples of new materials could include new medicine, foods, building materials, plastics		
	and alternative fuels		
	Content Limits		
	Assessment is limited to qualitative information.		
	Students are not requi	red to know particular names for synthetic mate	erials (i.e. ravon.
	polyester, acrylic, nylo	n, rayon, acetate, orlon, Kevlar)	(, - ,
	<u>Students do not need t</u>	to know: the types of reaction mechanisms invo	lved in chemical
	reactions such as polymerization.		
Calanaa			
Science	Atom, molecule, pure substance, subunit, molecular arrangement, matter, particle, pressure,		
Students are	chloride, carbon dioxide, negative impact, petroleum. natural gas. oil		
Expected to			
Know			
Science	Acid, base, reversible reactions	s, irreversible reactions, condensation reaction,	polymer,
Vocabulary	polymerization, bond, electron configuration, chromatography, catalyst, electron transfer, graphite,		
Students are	pharmaceutical, synthetic polymer, harvesting of resources, oil shale, geopolitical, extract, cost-		
Not Expected	benefit, organic materials		
		Phenomena	
Context/	Some example phenomena for	MS-PS1-3:	
Phenomena	It is difficult for the naked eye to tell the difference between cubic zirconia (CZ) and		
	diamond, but a genuin	e diamond will give off a strong blue fluorescen	ce when held under
	U.V. light.		
	Naturally occurring per	nicillin from penicillium mold is an effective anti	biotic against
	infections, but it is bro	ken up by stomach acid and can only be injected	d into the
	Dioodstream.	villow trop can be used as an alternative to and	rin for noin rolief
	I ne bark of the white v	willow tree can be used as an alternative to aspi	rin for pain relief.

	 Nylon and Kevlar are both synthetic fabrics, but Kevlar is much stronger – about five times as strong as steel.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Analyze and interpret scientific evidence from multiple scientific/technical sources including text, diagrams, charts, symbols and mathematical representations to describe how synthetic materials are made and how they come from natural resources.*
2.	Based on the information provided, identify, describe or illustrate a claim regarding the relationship between a characteristic of a synthetic material and its function in real world applications.
3.	Identify, summarize, or organize given data or other information to support or refute a claim that relates characteristic of a synthetic material to its function in real world.
4.	Identify relationships or patterns in scientific evidence at macroscopic and/or microscopic scales.
5.	Synthesize an explanation that incorporates the scientific evidence from multiple sources.
6.	Using scientific evidence, evaluate the validity/relevance/reliability of using synthetic materials as alternatives to natural materials and/or their impact on society.

*denotes those task demands which are deemed appropriate for use in stand-alone item development **For stand-alone items, focus on charts, diagrams, etc. rather than text-heavy stems for time considerations.

Performance	MS-PS1-4		
Expectation	Develop a model that predicts and describes changes in particle motion, temperature, and state of a		
	pure substance when thermal energy is added or removed.		
Dimensions	Developing	PS1.A: Structure and Properties of Matter	Cause and
	and Using	• Gases and liquids are made of molecules or inert atoms that are	Effect
	Models	moving about relative to each other.	 Cause and
	• Develop a	• In a liquid, the molecules are constantly in contact with others;	effect
	model to	in a gas, they are widely spaced except when they happen to	relationships
	predict	collide. In a solid, atoms are closely spaced and may vibrate in	may be used
	and/or	position but do not change relative locations.	to predict
	describe	• The changes of state that occur with variations in temperature	phenomena in
	phenomena.	or pressure can be described and predicted using these models	natural or
		of matter.	designed
			systems.
		PS3.A: Definitions of Energy	
		 The term "heat" as used in everyday language refers both to 	
		thermal energy (the motion of atoms or molecules within a	
		substance) and the transfer of that thermal energy from one	
		object to another. In science, heat is used only for this second	
		meaning; it refers to the energy transferred due to the	
		temperature difference between two objects. (secondary)	
		• The temperature of a system is proportional to the average	
		internal kinetic energy and potential energy per atom or	
		molecule (whichever is the appropriate building block for the	
		system's material). The details of that relationship depend on	
		atoms in the material. Temperature is not a direct measure of a	
		system's total thermal energy. The total thermal energy	
		(sometimes called the total internal energy) of a system	
		depends jointly on the temperature, the total number of atoms	
		in the system, and the state of the material (secondary)	
Clarifications	Clarification Sta	atements	
and Content	Emphase	sis is on qualitative molecular-level models of solids, liquids, and gase	es to show that
Limits	adding	or removing thermal energy increases or decreases kinetic energy of	the particles until
	a chang	ge of state occurs.	·
	 Exampl 	es of models could include drawings and diagrams.	
	 Exampl 	es of particles could include molecules of inert atoms.	
	Exampl	es of pure substances could include water, carbon dioxide, and heliu	m.
Content Limits:			
 Physical changes should be limited to freezing, melting, condensation, and even Assessment does not include: Sublimation (solid change of state directly to a gas); 		evaporation.	
		nent does not include:	
		Sublimation (solid change of state directly to a gas);	
	0	Calculations for internal energy, transfer of heat (q), (system and su	rroundings),
		entropy, work, and Hess's law;	
	0	Ideal gas laws and their relationships (Boyle's, Charles, Combined, P	V=nRT, etc.);
	0	The role that pressure and force (N) have in the kinetic molecular th	eory;
	0	Energy needed to break and reform chemical bonds in a chemical re	eaction, including
		the use of a catalyst to speed up a reaction;	
	0	Absolute zero and kelvin (Celsius and Fahrenheit temperature only)	

	 Students do not need to know:
	 Atomic structure (electrons orbit around a nucleus containing protons and neutrons)
	\circ The structure and interactions of matter at the bulk scale are determined by electrical
	forces within and between atoms.
	 Stable forms of matter are those in which the electric and magnetic field energy is minimized
	\sim A stable molecule has less energy by an amount known as the hinding energy than the
	same set of atoms separated; one must provide at least this energy in order to break the
	 That there is a single quantity called energy is due to the fact that a system's total energy
	is conserved, even as, within the system, energy is continually transferred from one object to another and among its various possible forms
Science	Phase, phase change, thermal energy, kinetic energy, pure substance, compound, thermometer,
Vocabulary	matter, melting, freezing, condensation, vapor, heat, vibrate, collide, inert atom.
Students are	
Expected to	
Know	
Science	Entropy, enthalpy, ideal gas law, sublimation, plasma, triple point, critical point, proton, neutron,
Vocabulary	electron, valence electrons, electrical energy, bond energy.
Not Exported	
to Know	
	Phenomena
Context/	Some example phenomena for MS-PS1-4:
Phenomena	• A tea kettle is sitting on a stove, under heat. As the water in the kettle begins to boil, a
	stream of steam is visible outside of its spout.
	 Dew forms on the grass in the morning.
	 As sugar is heated in a pan, it turns from a white solid to a light brown liquid.
This Per	formance Expectation and associated Evidence Statements support the following Task Demands.
This Per	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands
This Per 1. Select of	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components
This Per 1. Select of needed	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components I to model of the model changes in particle motion, temperature, and state of a pure substance when
This Per 1. Select of needed therma	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components I to model of the model changes in particle motion, temperature, and state of a pure substance when I energy is added or removed. Components might include: energy source, particles in motion, and
This Per 1. Select of needed therma bounda	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components I to model of the model changes in particle motion, temperature, and state of a pure substance when il energy is added or removed. Components might include: energy source, particles in motion, and aries of system.
This Per 1. Select of needed therma bounda 2. Asseml	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components I to model of the model changes in particle motion, temperature, and state of a pure substance when I energy is added or removed. Components might include: energy source, particles in motion, and aries of system. De or complete, from a collection of potential model components, an illustration or flow chart that is a components in particle motion.
This Per 1. Select of needed therma bounda 2. Asseml capable anormy	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components it to model of the model changes in particle motion, temperature, and state of a pure substance when il energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is a of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram
This Per 1. Select of needed therma bounda 2. Asseml capable energy 3. Manine	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components a to model of the model changes in particle motion, temperature, and state of a pure substance when al energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram.
This Per 1. Select of needed therma bounda 2. Assemi capable energy 3. Manipu that ac	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components d to model of the model changes in particle motion, temperature, and state of a pure substance when al energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram. Jlate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal
This Per 1. Select of needeo therma bounda 2. Asseml capable energy 3. Manipu that ac energy	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components it to model of the model changes in particle motion, temperature, and state of a pure substance when aries of system. Dele or complete, from a collection of potential model components, an illustration or flow chart that is a of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram. Jate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.*
This Per 1. Select of needed therma bounda 2. Assemil capable energy 3. Manipu that ac energy 4. Make c	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components it to model of the model changes in particle motion, temperature, and state of a pure substance when aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This <u>does not</u> include labeling an existing diagram. Ilate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.* redictions about the effects of changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.*
This Per 1. Select of needed therma bounda 2. Asseml capable energy 3. Manipu that ac energy 4. Make p when t	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components a to model of the model changes in particle motion, temperature, and state of a pure substance when al energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ble or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram. Jlate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.* oredictions about the effects of changes in particle motion, temperature, and state of a pure substance when thermal hermal energy is added or removed. Predictions can be made by manipulating model components,
This Per1.Select of needed therma bounda2.Assemil capable energy3.Manipu that ac energy4.Make p when t completed	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components it to model of the model changes in particle motion, temperature, and state of a pure substance when il energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram. Jate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.* redictions about the effects of changes in particle motion, temperature, and state of a pure substance when thermal hermal energy is added or removed. Predictions can be made by manipulating model components, ting illustrations, or selecting from lists with distractors.*
This Per1.Select of needed therma bounda2.Assemi capable energy3.Manipu that ac energy4.Make p when t comple5.Given r	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components it to model of the model changes in particle motion, temperature, and state of a pure substance when il energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram. Jate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.* rredictions about the effects of changes in particle motion, temperature, and state of a pure substance when thermal hermal energy is added or removed. Predictions can be made by manipulating model components, ting illustrations, or selecting from lists with distractors.* nodels or diagrams of particle motion, temperature, and state of a pure substance when thermal
This Per1.Select of needed therma bounda2.Assemil capable energy3.Manipe that ac energy4.Make p when t comple5.Given r energy	formance Expectation and associated Evidence Statements support the following Task Demands. Task Demands or identify from a collection of potential model components, including distractors, the components it to model of the model changes in particle motion, temperature, and state of a pure substance when il energy is added or removed. Components might include: energy source, particles in motion, and aries of system. ole or complete, from a collection of potential model components, an illustration or flow chart that is e of representing changes in particle motion, temperature, and state of a pure substance when thermal is added or removed. This does not include labeling an existing diagram. Ilate the components of the model to demonstrate the changes, properties, processes, and/or events t to result in the changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.* rredictions about the effects of changes in particle motion, temperature, and state of a pure substance when thermal is added or removed.* rredictions about the effects of changes in particle motion, temperature, and state of a pure substance hermal energy is added or removed. Predictions can be made by manipulating model components, ting illustrations, or selecting from lists with distractors.* nodels or diagrams of particle motion, temperature, and state of a pure substance when thermal is added or removed, identify how they change over time in a given scenario OR identify the

6.	Identify missing components,	relationships or other	limitations of the model.
----	------------------------------	------------------------	---------------------------

7. Describe, select, or identify the relationships among components of a model that describe changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD4 must be used with TD3 (...by completing illustrations...etc. is what makes this need to be paired)

Performance	MS-PS1-5			
Expectation	Develop and use a model to describe how the total number of atoms does not change in a chemical			
	reaction and thus mass is conserved.			
Dimensions	Developing and	PS1.B: Chemical Reactions	Energy and Matter	
	Using Models	• Substances react chemically in characteristic ways. In a	Matter is	
	 Develop and 	chemical process, the atoms that make up the original	conserved because	
	use a model to	substances are regrouped into different molecules, and	atoms are	
	describe	these new substances have different properties from	conserved in	
	unobservable	those of the reactants.	physical and	
	mechanisms.	• The total number of each type of atoms is conserved	chemical	
		and thus the mass does not change.	processes.	
Clarifications	Clarification State	ements	1	
and Content	Emphasize	e demonstrations of an understanding of the law of conserva	ition of matter.	
Limits	 Emphasis digital for 	is on law of conservation of matter and on physical models on mats that represent atoms.	or drawings, including	
	Models ca	in include already balanced chemical equations.		
	Content Limits			
	Assessment does not include the use of atomic masses, balancing symbolic equations, or			
	intermolecular forces.			
	Assessment does not include stoichiometry or balancing equations.			
	Assessme	• Assessment is limited to simpler molecules, i.e., carbon dioxide, ammonia, sodium chloride,		
	methanol, calcium chloride.			
Science	Transfer, molecule, element, conversion, phase change, dissolve, reactant, product.			
Vocabulary				
Students Are				
Expected to				
Science	Acid-base reaction	ns. base. catalyst. reaction rate, endothermic/exothermic, en	uilibrium. oxidation-	
Vocabulary	reduction reaction	n, chemical bond, electron sharing, electron transfer, ion, iso	tope.	
Students Are		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Not Expected				
to Know				
		Phenomena		
Context/	Some example ph	enomena for MS-PS1-5:		
Phenomena	An antacio	d tablet was added to water and bubbles appeared. The mas	s of the water and	
	antacid ta	blet after the tablet dissolved was less than the mass of the	water and tablet	
	before the	ey were mixed.		
	A strip of	metal was added to acid in a test tube and a balloon was pla	ced on top of the test	
	tube. Bub	bles appeared and after a few minutes, the balloon inflated.		

 100g of sugar completely dissolved in 100ml of water. After it dissolved, the mass of the mixture was 200g.
• Steel wool was soaked in water ad left out to dry. The steel wool turned dark red, ad the
mass of the steel wool after it dried was greater than before it was soaked in the water.
This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
 Select or identify from a collection of potential model components, including distractors, the components needed to model the phenomenon. Components might include atoms and molecules.
 Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing the conservation of matter.*
 Manipulate the components of the model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.*
10. Make predictions about the effects of changes in chemical reactions. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.**
11. Identify missing components, relationships, or limitations of the model.
12. Describe, select, or identify the relationships among components of a model that describe the conservation of matter, or explain the chemical reaction.
13. Use the model to provide a causal account that matter is conserved during a chemical reaction by calculating the number of atoms or total mass of reactants and products.
*denotes those task demands which are deemed appropriate for use in stand-alone item development

**TD4 may only be used in conjunction TD3

Expectation Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. FS1.B: Chemical Reactions Dimensions Constructing Explanations and Designing Solutions Undertake a design project, to construct and/or implement a solution that meets specific design criteria and constraints. FS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (<i>secondary</i>) FS1.C: Optimizing the Design Solution A solution that meets specific design criteria and constraints. FS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests identifying the characteristics of the design criteria and constraints. Clarifications and constraints. Clarifications tatements Emphasis is on the design, controlling the transfer of energy to the environment, and modifying what is proposed on the basis of the ext results leads to greater refinement Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combus	Performance	MS-PS1-6		
Dimensions Constructing Explanations and Designing Solutions • Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. PS1.B: Chemical reactions release energy, others store energy Energy and Matter ETS1.B: Developing Possible Solutions • Undertake a design qroject, energy can be tracked as energy flows through a designed or natural solution that meets specific design criteria and constraints. • A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary) • The transfer of energy can be tracked as energy flows through a designed or natural system. Clarifications and Content Limits Clarification Statements • A solution needs to be tested, and then modified on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) • The transfer of energy can be tracked as energy flows through a designed or natural system. Clarifications and Content Limits Clarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemi	Expectation	Undertake a design project to construct, test, and modify a device that either releases or absorbs		
Dimensions Constructing Explanations and Designing Solutions • Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. PS1.B: Chemical Reactions • Some chemical reactions release energy, others store energy Energy and Matter • The transfer of energy can be tracked as energy flows through a esigned or natural system. Clarifications and Content Limits PS1.B: Chemical Reactions • Some chemical reactions release energy, others store energy • The transfer of energy can be tracked as energy flows through a esigned or natural system. Clarifications and Content Limits Clarification Statements • Although one design may not be characteristics of the design that perform the best across all tests, identifying the characteristics may be incorporated into the new design, (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. • Students do not need to know; • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know Reactant, product, chemical		thermal energy by chemical processes.		
Explanations and Designing Solutions • Some chemical reactions release energy, others store energy • The transfer of energy can be store energy • Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. • A solution needs to be tested, and then modified or the basis of the test results, in order to improve it. (secondary) • The transfer of energy can be tracked as energy flows through a designed or natural system. Clarifications and Content • Solution that solution needs sign, carce of the design may not perform the best a across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design, (secondary) • The transfer of energy can be transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Clarifications and Content • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Sudents are types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical potential energy, system, environment, evaporate, condense Clarifications are explored to know; • Types of chemical potential energy, th	Dimensions	Constructing	PS1.B: Chemical Reactions	Energy and Matter
Designing Solutions • Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. FTS1.8: Developing Possible Solutions • A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary) energy can be tracked as energy • A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary) energy can be tracked as energy • A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary) energy can be tracked as energy • A solution needs to be tested, and then modified on the basis of the test results, in order to improve across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) energy can be tracked as energy Clarifications and Content Limits Clarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know Reactant, pr		Explanations and	 Some chemical reactions release energy, others 	 The transfer of
• Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.ETS1.B: Developing Possible Solutions • A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary)tracked as energy flows through a designed or natural system.Clarifications and Content LimitsClarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as dissolving ammonium chloride or calcium chloride.Clarifications and modifying the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance.Clarifications and Content LimitsClarification statements• Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.Clarifications and Content Limits• Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.• Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, combustion, etc.) • How to balance a chemical equationScience VocabularyReactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		Designing Solutions	store energy	energy can be
design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. ETS1.B: Developing Possible Solutions • A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary) flows through a designed or natural system. ETS1.C: Optimizing the Design Solution meets specific design criteria and constraints. • Athough one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation • Types of chemical potential energy, thermal energy, system, environment, evaporate, condense		 Undertake a 		tracked as energy
engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.• A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary)designed or natural system.Clarifications and Content Limits• A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary)designed or natural system.Clarifications and Content Limits• A solution needs to be tested, and then modified on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary)Clarifications and Content Limits• Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equationScience Vocabulary Students are Expected to KnowReactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		design project,	ETS1.B: Developing Possible Solutions	flows through a
design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.on the basis of the test results, in order to improve it. (secondary)system. TS1.C: Optimizing the Design Solution • Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary)Clarifications and Content Limits Clarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical potential energy, system, environment, evaporate, condents are travel to be compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		engaging in the	 A solution needs to be tested, and then modified 	designed or natural
construct and/or implement a solution that meets specific design criteria and constraints.it. (secondary)ETS1.C: Optimizing the Design Solution • Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and utimately to an optimal solution. (secondary)Clarifications and Content LimitsClarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equationScience Vocabulary Students are Expected to KnowReactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		design cycle, to	on the basis of the test results, in order to improve	system.
Implement a solution that meets specific design criteria and constraints. ETS1.C: Optimizing the Design Solution • Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and utimately to an optimal solution. (secondary) • Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: * Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) * How to balance a chemical equation Science Vocabulary Students are Expected to Know Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		construct and/or	it. (secondary)	
solution that meets specific design criteria and constraints. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) Clarifications and Content Limits Clarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		implement a		
Meets specific design criteria and constraints. Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride. Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Science Know		solution that	ETS1.C: Optimizing the Design Solution	
design criteria and constraints. across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) • Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. • Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		meets specific	 Although one design may not perform the best 	
and constraints. the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) • Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. • Entities • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary • Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense		design criteria	across all tests, identifying the characteristics of	
Science Yudeuseful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary) Clarifications and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) Science Vocabulary Students are Expected to Know: • How to balance a chemical energy, thermal energy, system, environment, evaporate, condense		and constraints.	the design that performed the best in each test can	
Process - that is, some of the characteristics may be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation • How to balance a chemical energy, thermal energy, system, environment, evaporate, condense			provide useful information for the redesign	
be incorporated into the new design. (secondary) • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Know Know			process - that is, some of the characteristics may	
 The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense 			be incorporated into the new design. (secondary)	
Solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary) Clarifications and Content Limits Clarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation • How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Expected to Know Know			• The iterative process of testing the most promising	
Clarifications Clarification Statements and Content Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Limits Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) Keactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Science Reactant, product, chemical potential energy, thermal energy, system, environment, evaporate, condense			solutions and modifying what is proposed on the	
Clarifications and Content Limits Clarification Statements • Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense			basis of the test results leads to greater refinement	
Clarifications and Content Limits Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know			and ultimately to an optimal solution. (secondary)	
 Chambations and Content Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Vocabulary Students are Expected to Know 	Clarifications	Clarification Statements		
Limits Content Limits and device using factors such as type and concentration of a substance. • Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Vocabulary Students are Expected to Know	and Content	Emphasis is on the design, controlling the transfer of energy to the environment, and		
 Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Vocabulary Students are Expected to Know	Limits	modification of a device using factors such as type and concentration of a substance.		
 Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Vocabulary Students are Expected to Know 	Linnes	Examples of designs could involve chemical reactions such as dissolving ammonium		
Content Limits • Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Expected to Know Know		chloride or ca	alcium chloride	
Content Limits Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. Students do not need to know: Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Vocabulary Students are Expected to Know 				
 Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device. <u>Students do not need to know:</u> Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Vocabulary Students are Expected to Know 		Content Limits		
testing the device. • Students do not need to know: • Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) • How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Expected to Know Know		Assessment is limited to the criteria of amount, time, and temperature of substance in		
 <u>Students do not need to know:</u> Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Expected to Know 		 testing the device. <u>Students do not need to know:</u> 		
 Types of chemical reactions (decomposition, synthesis, single replacement, double replacement, combustion, etc.) How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, condense Expected to Know 				
replacement, combustion, etc.)• How to balance a chemical equationScienceReactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, concentration, chemical potential energy, thermal energy, system, environment, evaporate, Students are Expected to Know		 Type: 	s of chemical reactions (decomposition, synthesis, single	e replacement, double
 How to balance a chemical equation Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, Vocabulary concentration, chemical potential energy, thermal energy, system, environment, evaporate, Students are condense Expected to Know 		repla	cement, combustion, etc.)	
Science Reactant, product, chemical bond, compound, molecule, solution, dissolve, solubility, Vocabulary concentration, chemical potential energy, thermal energy, system, environment, evaporate, Students are condense Expected to Know		• How	to balance a chemical equation	
ScienceReactant, product, chemical bond, compound, molecule, solution, dissolve, solubility,Vocabularyconcentration, chemical potential energy, thermal energy, system, environment, evaporate,Students arecondenseExpected toKnow				
Vocabulary concentration, chemical potential energy, thermal energy, system, environment, evaporate, Students are condense Expected to Know	Science	Reactant, product, ch	emical bond, compound, molecule, solution, dissolve, s	olubility,
Expected to Know	Vocabulary	concentration, chemi	cal potential energy, thermal energy, system, environm	ent, evaporate,
Know	Students are	condense		
KNOW	Expected to			
Colongo Endethermic evethermic precipitent colute column event discolution discolution and a factority	KNOW	Endothorreit austha	rmie proginitant colute colucat existellization disset	tion nolor/relevity
Science Endothermic, exothermic, precipitant, solute, solvent, crystallization, dissolution, polar/polarity,	Vocabulary	ion intermolecular fo	muc, precipitant, solute, solvent, crystallization, dissolu	lution, polar/polarity,
Students are reaction microstates equilibrium saturate (saturation	vocabulary Students are	reaction microstates	equilibrium saturate (saturation	nution, nedt of
Not Expected	Not Expected		, בקטווטרוטווו, זמנטרמנצ/זמנטרמנוטוו	
	to Know			
Phenomena			Phenomena	

Context/ Phenomena		Engineering performance expecations are built around meaningful design problems rather than phenomena. For this performance expectation, the design problem and solutions replace phenomena.
		Some example design problems for MS-PS1-6:
		 Design a sport's injury pack that when used, will heat and soothe sore muscles.
		 Design a sport's injury cold pack that will help prevent swelling.
		 Design a self-heating pad that can warm ready-to-eat meals.
		• Design a device that can be used to keep electronics, like computers, from overheating.
7	This Perfo	rmance Expectation and associated Evidence Statements support the following Task Demands.
		Task Demands
1.	Articulat may ent	e, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This ail sorting relevant from irrelevant information or features.
2.	Express absorpti as a flow	or complete a causal chain explaining the chemical processes that resulted in the release or on of thermal energy. This may include indicating directions of causality in an incomplete model such chart or diagram, or completing cause and effect chains.
3.	Describe chain an	, identify, and/or select evidence supporting the inference of causation that is expressed in a causal d/or an explanation of the processes that cause the observed results.
4.	Use an e chemica tempera system.	xplanation to predict the direction or the relative magnitude of a change in thermal energy of a l system, given a change in the amount/concentration of chemical substances in the system, the ture of the substances in the system, and/or the amount of time the substances interact in the
5.	Identify design so	or assemble from a collection, including distractors, the relevant aspects of the problem that given plutions, if implemented, will resolve/improve.
6.	Using the judged.	e given information, select or identify the criteria against which the device or solution should be
7.	Using giv	ven data, propose, illustrate, or assemble a potential device (prototype) or solution.
8.	Using a s testing n	imulator, test a proposed prototype and evaluate the outcomes, potentially including proposing and nodifications to the prototype.

Performance	MS-PS2-1		
Expectation	Apply Newton's Third Lav objects.	v to design a solution to a problem involvir	ng the motion of two colliding
Dimensions	Constructing Explanations and Designing Solutions • Apply scientific ideas or principles to design an object, tool, process, or system.	 PS2.A: Forces and Motion For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's Third Law). 	Systems and System Models • Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.
Clarifications and Content Limits	Clarification Statements Examples of practice between a car an Content Limits Assessment is lim Students do not restricted to the set of th	tical problems could include the impact d stationary objects, and between a meter nited to vertical or horizontal interactions in need to know: vector addition	of collisions between two cars, or and a space vehicle. n one dimension.
Science Vocabulary Students are Expected to Know	Conservation of moment force, impact, net force, i	um, energy transfer, transfer, force, baland nertia, action/reaction, gravity, acceleratio	ced force, friction, direction of a on, Newton, thrust, lift.
Science Vocabulary Students are Not Expected to Know	Elastic collision, inelastic friction coefficient, horizo	collision, impulse, coefficient of restitution ontal and vertical velocities (arc), aerodyna	n, drag force, terminal velocity, nmics, magnitude, vector.
		Phenomena	
Context/ Phenomena	Engineering performance phenomena. In this case, performance expectation Some example design pro • Testing different • Design a bike hel • Design a containe rough terrain. • Use Newton's thi height from whic	expectations are built around meaningful the design problems involve two colliding , the design problem and competing soluti oblems for MS-PS2-1: balls/objects for elementary students to the met that will keep the rider safe during a c er that will protect vaccines from breaking rd law to create a system that will allow a h it was dropped.	design problems rather than objects in a system. For this ions replace phenomena. nrow at a dunk-tank target. ollision. as they are transported across ball to bounce higher than the
This Perfo	rmance Expectation and as	ssociated Evidence Statements support the	e following Task Demands.
		Task Demands	
1. Identify design set	or assemble from a collect olutions, if implemented, v	on, including distractors, the relevant aspe vill resolve/improve.	ects of the problem that given
2. Using giv mass, ar	ven information, select or ind speed of objects and ma	dentify constraints that the device or solut terials.	tion must meet, including cost,

- 3. Using the given information, select or identify the criteria against which the device or solution should be judged.
- 4. Using given data, propose/illustrate/assemble a potential device (prototype) or solution.*
- 5. Using a simulator, test a proposed prototype and evaluate the outcomes; potentially propose and test modifications to the prototype.*

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	MS-PS2-2		
Expectation	Plan an investigation to provide evidence that the change in an object's motion depends on the		
	sum of the forces on the object and the mass of the object.		
Dimensions	Planning and Carrying	PS2.A: Forces and Motion	Stability and
	Out Investigations	• The motion of an object is determined by the	Change
	 Plan an investigation 	sum of the forces acting on it; if the total force	 Explanations of
	individually and	on the object is not zero, its motion will	stability and
	collaboratively, and in	change. The greater the mass of the object,	change in
	the design: identify	the greater the force needed to achieve the	natural or
	independent and	same change in motion. For any given object, a	designed
	dependent variables	larger force causes a larger change in motion.	systems can be
	and controls, what tools	 All positions of objects and the directions of 	constructed by
	are needed to do the	forces and motions must be described in an	examining the
	gathering, how	arbitrarily chosen reference frame and	changes over
	measurements will be	arbitrarily chosen units of size. In order to	time and forces
	recorded, and how	share information with other people, these	at different
	many data are needed	choices must also be shared.	scales.
	to support a claim		
Clarifications	Clarification Statements		
and Content	 Emphasis is on: 		
Limits	Balanced (New	ton's First law) and unbalanced forces in a system	
	Qualitative con	nparisons of forces, masses and changes in motion (Newton's Second
	Law)		
	Frame of reference and specification of units		
	Content Limits		
	Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time.		
	Students do not need to know: trigonometry		
	<u>Students do not ne</u>	<u>ed to know:</u> trigonometry	
C			
Science	Applied force, balanced for	ce, collision, force, unbalanced force, position over	time, net force
Vocabulary			
Students are			
Expected to			
Science	Newton's Laws of Motion	acceleration velocity inertial frame of reference m	omentum friction
Vocabulary	Newton's Laws of Motion, a		iomentum, inclion
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenomena	for MS-PS2-2	
Phenomena	 Δ tennic hall is dror 	ned on a trampoline and bounces up to a beight b	A howling hall is
. nenomena	then dronned on th	he same trampoline. The bowling hall hounces up to	a height higher
	than h		
	A howling hall is rol	lled towards a bowling nin. When the bowling hall h	its the pin, the pin
	falls down. Then a	marble is rolled towards a bowling pin. When the n	narble hits the pin
	the pin does not fa	ll down.	· ···· ···· ···· ···· ···· ···· ···· ····

	 A soccer player kicks the ball 50 yards. She then kicks another ball and it only goes 30 yards. Two magnets of the same size are held apart from each other. One magnet is let go and moves towards the stationary magnet. When two other magnets are close to each other and one is let go, it moves toward the stationary magnet, faster.
This Perfo	mance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
 Identify in an ob 	from a list, including distractors, the materials/tools needed for an investigation of how the change ject's motion depends on the sum of the forces on the object and the mass of the object.
2. Identify object, a	the outcome data that should be collected in an investigation of how the sum of the forces on an is well as the object's mass, affect the change in motion of the object.
3. Evaluate	the sufficiency and limitations of data collected to explain the phenomenon.
Make ar affect th	d/or record observations about how the sum of the forces on an object, and the mass of the object, e change in motion of the object.
5. Interpre affected	t and/or communicate the data from an investigation on how the change in motion of an object is by the sum of all forces and the mass of the object.
6. Explain of forces of the fo	or describe the causal processes that lead to the data that is observed in an investigation of how the n an object, and its mass, affect its change in motion.
7. Select, o forces o	lescribe, or illustrate a prediction made by applying the findings from an investigation on how the n an object, and its mass, affect its change in motion.

Performance	MS-PS2-3		
Expectation	Ask questions about data to determine the forces.	factors that affect the strength of elec	trical and magnetic
Dimensions	Asking Questions and Defining Problems	PS2.B: Types of Interactions	Cause and Effect
	 Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles. 	• Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.	 Cause and effect relationships may be used to predict phenomena in natural or designed systems.
Clarifications	Clarification Statements		
and Content Limits	 Examples could include electromagnet Examples of data could include the effectromagnet, or of increasing the n motor. Content Limits 	ets, electric motors, or generators. ffect of the number or turns of wire on umber or strength of magnets on the s	the strength of an speed of an electric
	 Assessment about questions that re reasoning and algebraic thinking. 	equire quantitative answers is limited t	to proportional
Science Vocabulary Students are Expected to Know	Attraction, conductor, electric current, elec induction, insulator, permanent magnet, po	tric field, electromagnetic field, electro plarity, repulsion, resistance, voltage.	omagnet, frequency,
Science Vocabulary Students are Not Expected to Know	Lorentz force, electric potential, electromo	tive force.	
	Phenor	nena	
Context/	Some example phenomena for MS-PS2-3:		
Phenomena	 A radio emits music from its speake can be heard. More electrical current is produced Merchandise from a store that uses alarm at the exit if the tag is not ren 	ers. After a magnet in the speakers is re by a windmill when the wind speed is s electromagnetic anti-shoplifting devi- moved.	emoved, no sound greater. ces will set off an
	 An electromagnet at a junkyard car pick up much more than a few pape 	n lift old cars, while a homemade elect er clips.	romagnet cannot
This Perf	ormance Expectation and associated Evidenc	e Statements support the following Ta	sk Demands.
	Task Der	nands	
1. Make ar	nd/or record observations about the factors t	hat affect electromagnets, electric mo	tors, or generators.
2. Organize patterns	e and/or arrange (e.g., using illustrations and, s, or correlations in the change in the strengtl	/or labels), or summarize data to highl h of electrical and magnetic forces.	ight trends,

3.	Generate or construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations in the factors that affect the strength of electric and magnetic forces. This may include sorting out distractors.
4.	Explain or describe the causal processes that lead to the change in the strength of electrical and magnetic forces.
5.	Use relationships identified in the data to predict the strength of electric and/or magnetic forces.
6.	Select from a list of questions, including distractors, a scientifically testable question about factors that affect the strength of electrical or magnetic forces.

Performance	MS-PS2-4		
Expectation	Construct and present arguments using evidence to support the claim that gravitational interactions		
	are attractive and depend on the m	asses of interacting objects.	
Dimensions	 Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. 	 PS2.B Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun. 	Systems and System Models • Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.
Clarifications	Clarification Statements		
and Content Limits	 Examples of evidence of arg tools, and charts displaying periods of objects within th 	guments could include data genera mass, strength of interaction, dist e solar system.	ated from simulations or digital ance from the sun, and orbital
	Content Limits		
	 Assessment does not incluc <u>Students do not need to kn</u> 	le Newton's law of gravitation or K ow: mathematical representations	Kepler's laws. s of gravity (values, units, etc.).
Science	Orbit, magnitude, galaxy, solar syste	em, satellite, force fields, ellipse, p	proportional, period.
Vocabulary			
Students are			
Expected to			
Know			
Science	Terminal velocity, relativity, gravitational energy, gravitational field, inverse square law.		
Vocabulary			
Students are			
Not Expected			
to know		Dhanamana	
Context/	Some example phonomona for MS		
Phenomena	• The moon orbits Earth	r JZ-4.	
Thenomena	Astronauts fall more slowly	when jumping on the moon than	on Farth
	A dronned apple falls towar	rd Farth, but not toward the moon	
	Bockets have to travel extremely	emely fast when they leave Farth	•
This Perfe	prmance Expectation and associated	Evidence Statements support the f	following Task Demands.
	Т	ask Demands	
1. Articula may ent	1. Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information.		
2. Predict of effect re	outcomes when properties or proxim lationships	ity of the objects are changed, give	en the inferred cause and
3. Describe	e, identify, and/or select information	needed to support an explanation	**

- 4. Identify patterns or evidence in the data that support conclusions about the relationship between mass and gravity.*
- 5. Using evidence, explain the relationship between mass and gravity.*

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD3 may be used only in conjunction with TD4 or TD5.

Performance	MS-PS2-5			
Expectation	Conduct an investigation and evaluate the experimental design to provide evidence that fields exist			
	between objects exerting forces on e	each other even though the objects are not	in contact.	
Dimensions	Planning and Carrying Out	PS2.B: Types of Interactions	Cause and Effect	
	Investigations	 Forces that act at a distance (electric, 	 Cause and effect 	
	 Conduct an investigation and 	magnetic, and gravitational) can be	relationships may	
	evaluate the experimental design	explained by fields that extend	be used to predict	
	to produce data to serve as the	through space and can be mapped by	phenomena in	
	basis for evidence that can meet	their effect on a test object (a charged	natural or	
	the goals of the investigation.	object, or a ball, respectively).	designed systems.	
Clarifications	Clarification Statements			
and Content	• Examples of this phenomeno	on could include the interactions of magnet	s, electrically-charged	
Limits	strips of tape, and electricall	y-charged pith balls.		
	Examples of investigations co	ould include first-hand experiences or simul	lations.	
	Content Limits			
	 Assessment is limited to elect 	ctric and magnetic fields, and limited to qua	litative evidence for	
	the existence of fields.			
Science	Conductor, electric charge, electric c	urrent, electric force, electromagnetic field	, electromagnet,	
Vocabulary	frequency, induction, insulator, magnetic field lines, magnetic force, permanent magnet, polarity,			
Students are	repuision, resistance, voltage, direction, magnitude, ampere, charged particle, volts, gravity			
Expected to				
Science	Lorentz force electric notential electromotive force permeating vector field quantum property			
Vocabulary	Lorentz force, electric potential, electromotive force, permeating, vector field, quantum property,			
Students are	electrostatic general relativity			
Not Expected	בובנוו טגנמונ, צבוובו מו דבומנועונע			
to Know				
		Phenomena		
Context/	Some example phenomena for MS-P	PS2-5:		
Phenomena	 A compass is opened and set 	t on a table. The needle spins for a bit and t	hen settles pointing	
	north.			
	Two blue-painted metal box	es sit on a table. With a pocket knife, a pers	on easily scratches	
	some of the paint off of one	box. But they cannot remove the paint from	n the other box.	
	 A person walks across a carp 	eted floor in stocking feet. They touch anot	her person who is	
	sitting in a chair, delivering a	a large shock.		
	A multimeter records the pro	esence of an electric current when a coil rot	ates near a magnet.	
Inis Perr	ormance Expectation and associated E	cvidence Statements support the following	Task Demands.	
1 Idoptify	from a list including distractors the m	ask Demanus	tion of fields that ovist	
L. Identity	objects exerting forces on each other	r even though the objects are not in contact	tion of helds that exist	
2. Identify	the outcome data that should be colle	ected for a given purpose in an investigation	of fields that exist	
betweer	between objects exerting forces on each other even though the objects are not in contact.			

3.	Evaluate the sufficiency and limitations of data collected to explain the phenomenon.
4.	Make and/or record observations about fields that exist between objects exerting forces on each other even though the objects are not in contact.
5.	Interpret and/or communicate the data from an investigation of the field that exists between two objects exerting forces on each other even though the objects are not in contact.
6.	Explain, describe, or identify the causal processes that lead to the observed data about the field that exists between two objects exerting forces on each other even though the objects are not in contact.
7.	Select, describe, or illustrate a prediction made by applying the findings from an investigation of the field that exists between two objects exerting forces on each other even though the objects are not in contact

Performance	MS-PS3-1			
Expectation	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to			
	the mass of an object and to the speed of an object			
Dimensions	Analyzing and	PS3.A: Definitions of Energy	Scale, Proportion, and Quantity	
	Interpreting Data Construct and interpret graphical displays of data to identify linear and nonlinear relationships 	• Motion energy is properly called kinetic energy it is proportional to the mass of the moving object and grows with the square of its speed.	• Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.	
Clarifications	Clarification Statements			
and Content Limits	 Emphasis is on deskinetic energy and Examples could in Riding a bi Rolling dif Getting him Content Limits Students do not not point 	scriptive relationships between k speed. clude: cycle at different speeds ferent sizes of rocks downhill t by a wiffle ball vs a tennis ball eed to know: vectors such as velo	kinetic energy and mass separately from ocity, the exact formula for the kinetic	
	energy of an objec	t or how to make calculations us	sing the formula.	
Science Vocabulary Students are Expected to Know	Forms of energy, magnitude, motion energy, proportional, ratio, square root, potential energy, elastic collision, inelastic collision			
Science Vocabulary Students are Not Expected to Know	Velocity, vector, inertial fr Mechanics	ame of reference, acceleration, o	deceleration, relative motion, Newtonian	
		Phenomena		
Context/ Phenomena	 Some example phenomen Balls of different n the indent is show A pendulum is dro distance the box th A ball thrown at a the distance it bou Trains with differin cars vs stopping di 	a for MS-PS3-1: nasses are dropped into a pile of n. pped so that it hits a box on the ravels is shown. wall will bounce back a certain o inces back is given. ng amounts of train cars all come stance is given.	snow. A graph of the mass vs. the depth of ground. A graph of the drop height vs the distance. A table of the speed of the ball vs. e to a stop. A table of the number of train	
This Perfe	ormance Expectation and as	sociated Evidence Statements s	upport the following Task Demands.	
		Task Demands		
 Organize and/or arrange (e.g., using illustrations and/or labels), or summarize data to highlight trends, patterns, or correlations among observations and data concerning the mass, speed and kinetic energy of objects. This may include sorting out distractors. 				

- Generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations in how the kinetic energy of an object changes with its mass and its speed. This may include sorting out distractors.
- 3. Use relationships identified in the data to predict how the kinetic energy of an object will change based on a change in speed of the object or mass of the object.
- 4. Identify patterns or evidence in the data that supports inferences about how kinetic energy changes with the speed of an object and the mass of an object.

Performance	MS-PS3-2			
Expectation	Develop a model to describe that when the arrangement of objects interacting at a distance			
	changes, differen	t amounts of potential energy are stored in the system	n	
Dimensions	Developing and	PS3.A: Definitions of Energy	Systems and System	
	Using Models	 A system of objects may also contain stored 	Models	
	• Develop a	(potential) energy, depending on their relative	 Models can be used to 	
	model to	positions.	represent systems and	
	describe		their interactions—such	
	unobservable	PS3.C: Relationship Between Energy and Forces	as inputs, processes, and	
	mechanisms.	• When two objects interact, each one exerts a	outputs—and energy and	
		force on the other that can cause energy to be	matter flows within	
		transferred to or from the object.	systems.	
Clarifications	Clarification Stat	ements		
and Content	• Emphasio	Clarification Statements		
Limits	 Emphasis is on relative amounts of potential energy, not on calculations of potential energy Examples of objects within systems interacting at varying distances could include the Ear 			
	and eithe	er a roller coaster cart at varying positions on a hill or c	biects at varving heights on	
	shelves, o	changing the direction/orientation of a magnet, and a	balloon with static electrical	
	charge b	eing brought closer to a classmate's hair.		
	Examples	s of models could include representations, diagrams, p	ictures, and written	
	description	ons of systems.		
	Content Limits			
	Assessme	ent does not include calculations of kinetic and potent	ial energy.	
	 Assessing 	ent is infined to two objects and electric, magnetic, and	a gravitational interactions.	
Science	Electron, proton.	distribution of charged particles, electrical charge, ne	gatively charged, positively	
Vocabulary	charged, neutrally charged, magnetic polarity, conductor, insulator, electromagnet.			
Students are	0		5	
Expected to				
Know				
Science	Oscillation, harmonic oscillator, period, momentum, spring constant, equilibrium position,			
Vocabulary	acceleration of gravity, work, power, mechanical advantage, Work-energy theorem, rotational			
Students are	motion, translational motion, torque, moment, Coulomb's law, Faraday cage, triboelectricity,			
Not Expected	electric potential	, gravitational potential.		
		Phenomena		
Context/	Some example pl	henomena for MS-PS3-2:		
Phenomena	A roller c	oaster track contains two hills of equal size. A roller co	aster car sitting on the first	
	hill is rele	eased and allowed to roll down the tracks of the first h	ill. The car comes to a stop	
	before it	reaches the top of the second hill.		
	Two wree	cking ball cranes sit next to two concrete buildings. Cra	ane A has a ball that has less	
	mass tha	n the ball of Crane B. Both cranes swing their balls tow	vard the buildings. Crane A's	
	ball start	s out higher than Crane B's ball. Crane A's ball does su	bstantially more damage to	
	the build	ing than Crane B's ball.		
	The pole	s of an electromagnet can be reversed by reversing the	e electromagnet's connection	
	to a batte	ery. A shanning part calle dawn o bill in a marking later data da		
	An empty showning	y snopping cart rolls down a hill in a parking lot and de	nts a parked car, while a full	
	snopping	, care rous across a nacioe and does not damage a park	eu (dl.	

	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1.	Select or needed betweer system.	identify from a collection of potential model components, including distractors, the components to model different amounts of potential energy stored in a system, compared to the distance interacting objects. Components might include: energy source, objects in motion, and boundaries of	
2.	Assembl capable existing	e or complete, from a collection of potential model components, an illustration or flow chart that is of representing changes in potential energy stored in a system. This <i>does not</i> include labeling an diagram.	
3.	Manipul that act	ate the components of the model to demonstrate the changes, properties, processes, and/or events to result in the changes in potential energy.	
4.	Make pr energy s illustrati	edictions about the effects of changes in distances between interacting objects and the potential tored in the system. Predictions can be made by manipulating model components, completing ons, or selecting from lists with distractors.	
5.	Given m in a give	odels or diagrams of a system containing potential energy, identify how the energy changes over time n scenario OR identify the properties of the variables that cause the changes.	
6.	Identify	missing components, relationships, or other limitations of the model.	
7.	Describe potentia	e, select, or identify the relationships among components of a model that describe changes in I energy of a system when the distance between interacting objects changes.	

Performance	MS PS3-3			
Expectation	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes			
	thermal energy to	ransfer.		
Dimensions	Constructing	PS3.A: Definitions of Energy	Energy and	
	Explanations	• Temperature is a measure of the average kinetic energy of	Matter	
	and Designing	particles of matter. The relationship between the	• The transfer	
	Solutions	temperature and the total energy of a system depends on	of energy can	
	 Apply 	the types, states, and amounts of matter present.	be tracked as	
	scientific		energy flows	
	ideas or	PS3.B: Conservation of Energy	through a	
	principles to	• Energy is spontaneously transferred out of hotter regions or	designed or	
	design,	objects and into colder ones	natural	
	construct, and	FTC1 A: Defining and Delimiting on Engineering Ducklass	system.	
	of an object	EISI.A: Defining and Delimiting an Engineering Problem		
	tool process	• The more precisely a design task's criteria and constraints		
	or system	can be defined, the more likely it is that the designed		
	or system.	includes consideration of cointific principles and other		
		relevant knowledge that is likely to limit possible solutions		
		relevant knowledge that is likely to limit possible solutions.		
		ETS1.B: Developing Possible Solutions		
		• A solution needs to be tested, and then modified on the		
		basis of the test results, in order to improve it. There are		
		systematic processes for evaluating solutions with respect to		
		how well they meet criteria and constraints of a problem.		
Clarifications	Clarification Statement			
and Content	 Examples of devices could include an insulated box and a Styrofoam cup. 			
Limits				
	Content Limits			
	Students	should be given the problem to solve.		
	 <u>Students do not need to know</u>: Calculate energy of the system or change in energy 		n energy.	
Science	Temperature kinetic energy energy transfer conductor insulator convection conduction and			
Vocabulary	radiation			
Students are				
Expected to				
Know				
Science	Energy units (jou	Energy units (joules, amperes), charged particles		
Vocabulary				
Students are				
Not Expected				
to Know				
Cantert	Facility and the second	Phenomena		
Context/	Engineering perfo	prmance expectations are built around meaningful design problem	ns rather than	
Phenomena	phenomena. For	phenomena. For this performance expectation, design problems or design solutions replace		
	pnenomena.			
	Some examples of design problems for MS-PS3-3:			
	A heated	swimming pool needs to be covered to reduce energy costs in the	e winter.	

	 Many cooks prefer pans that heat more evenly. Which materials should pans be made of? Design a more energy-efficient window. Choose the materials for a pot holder. 		
٦	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
Task Demands			
1.	Identify or assemble from a collection the relevant aspects of the problem that given design solutions for either minimizing or maximizing thermal energy transfer, if implemented, will resolve/improve.		
2.	Using the given information, select or identify the criteria against which the device or solution that either minimizes or maximizes thermal energy transfer should be judged.		
3.	 Using given information, select or identify constraints that the device or solution that either minimizes or maximizes thermal energy transfer must meet. 		
4.	4. Using given data, propose, illustrate, and/or assemble a potential device (prototype) or solution that either minimizes or maximizes thermal energy transfer.		
5.	Using a simulator, test a proposed prototype and evaluate the outcomes, potentially including proposing and testing modifications to the prototype.		
Performance	MS-PS3-4		
----------------	---	---	----------------------------------
Expectation	Plan an investigation to determine the relationships among energy transferred, type of matter, mass,		
	and change in the average k	inetic energy of particles, as measured by the temp	perature of a sample.
Dimensions	Planning and Carrying Out	PS3.A: Definitions of Energy	Scale, Proportion,
	Investigations	 Temperature is a measure of the average 	and Quantity
	 Plan an investigation 	kinetic energy of particles of matter. The	 Proportional
	individually and	relationship between the temperature and	relationships (e.g.,
	collaboratively and, in	the total energy of a system depends on the	speed as the ratio of
	the design, identify types, states, and amounts of matter present. distance		distance traveled to
	independent and		time taken) among
	dependent variables and	PS3.B: Conservation of Energy and Energy	different types of
	controls, what tools are	Transfer	quantities provide
	needed to do the	• The amount of energy transfer needed to	information about
	gathering, how	change the temperature of a sample of	the magnitude of
	measurements will be	matter by a given amount depends on the	properties and
	recorded, and now many	nature of the matter, the size of the sample,	processes.
	data are needed to	and the environment.	
Clarifications	Clarification Statements	<u> </u>	
and Content	Examples of experim	nents could include comparing final water tempera	tures after different
Limits	masses of ice melter	d in the same volume of water with the same initia	I temperature; the
	temperature change	e of samples of different materials with the same m	hass as they cool or
	heat in the environment; or the same material with different masses when a specific amount		
	of energy is added.		
	Contant Limits		
	Assessment does no	t include calculating the total amount of thermal e	nergy transferred
			nergy transferred.
Science	Volume, collide, collision, heat conduction, particle, stored energy, transfer, average, proportional,		
Vocabulary	ratio, thermal energy		
Students are			
Expected to			
Know		· · ·	
Science	i nermai equilibrium, thermo	Daynamics	
Students are			
Not Expected			
to Know			
	Phenomena		
Context/	Some example phenomena for MS-PS3-4:		
Phenomena	• A mug of hot coffee is set on a cork coaster. After letting the mug of coffee sit for a while, a		
	person picks up the mug and the coaster and notices that both the mug and coaster are		
	warm.		
	• When placed over the same heat source, water takes longer to reach 100C ^o than a cola soft		
	drink.		
	• Pot holders work well when they're dry. When they're wet, they don't.		
	• A metal spoon used to stir a not beverage gets not much more quickly than a wooden spoon.		
This Perf	This Performance Expectation and associated Evidence Statements support the following Task Demands.		

	Task Demands
1.	Identify from a list, including distractors, the materials/tools needed for an investigation of how thermal energy is transferred to and from the environment and to and from materials of different/ same types of matter and different/ same masses.
2.	Identify the data that should be collected in an investigation of how thermal energy is transferred to and from the environment and to and from materials of different/ same types of matter and different/ same masses.
3.	Evaluate the sufficiency and limitations of data collected to explain a phenomenon.
4.	Make and/or record observations about time, mass of materials, type of materials, initial and final average kinetic energy (temperature) of materials, and the surrounding environment.
5.	Interpret and/or communicate data from an investigation.
6.	Explain or describe the causal processes that lead to observed data.
7.	Select, describe, or illustrate a prediction made by applying the findings from an investigation.
8.	Assemble or specify a controlled experiment or investigation to evaluate the effect of the type of matter, amount of heat, or volume of material heated.

Performance	MS-PS3-5			
Expectation	Construct, use, and present arguments to support the claim that when the kinetic energy of an			
	object changes, energy is transferred to or from the object.			
Dimensions	Engaging in Argument from Evidence	PS3.B: Conservation of Energy	Energy and Matter	
	• Construct, use, and present oral and	and Energy Transfer	 Energy may take 	
	written arguments supported by	 When the kinetic energy of an 	different forms (e.g.,	
	empirical evidence and scientific	object changes, there is	energy in fields,	
	reasoning to support or refute an	inevitably some other change	thermal energy, and	
	explanation or a model for a	in energy at the same time.	energy of motion).	
	phenomenon.			
Clarifications	Clarification Statements			
and Content	Emphasis is on understanding the second	hat when the kinetic energy of an o	bject increases or	
Limits	decreases, the energy (e.g., kine	etic, thermal, potential, light, sound	l) of other objects or the	
	surroundings within the system	Increases or decreases, indicating t	that energy was	
	Emphasis is on knowing that to	c. Amporatura is the measure of the	avorago kingtic oporgy of	
	particles of matter.	emperature is the measure of the	average killetic energy of	
	Examples of empirical evidence	e used in arguments could inclue	de an inventory or other	
	representation of the energy be	fore and after the transfer in the for	m of temperature changes	
	or motion of an object.			
	Contont Limite			
	Assessment does not include any calculations of energy or energy flow			
Science	Potential energy, heat energy, closed sy	vstem, open system, friction, joule,	force, transformation of	
Vocabulary	energy, thermometer, Fahrenheit, Celsi	us, pendulum, sound energy, conse	ervation of energy	
Students Are				
Expected to				
Know				
Science	Co-efficient of kinetic energy, air resistance, work, energy efficiency, chemical energy, electrical			
Vocabulary	energy, machine (for transforming energy), mechanical energy.			
Students Are				
Not Expected				
	Phe	nomena		
Context/	Some example phenomena for MS-PS3-	-5:		
Phenomena	• The Riverside geyser in the Upp	er Geyser Basin at Yellowstone Nat	ional Park throws out jets	
	of hot water into the air at regu	llar intervals.	,	
	• When the brakes are applied, si	parks fly out between the wheels ar	nd the metal tracks as a	
	train slows down.			
	Bowling pins fall over and start	to roll when struck by a bowling ba	II.	
	A hot air balloon lifts off the gro	ound as the burner is lit under the b	alloon.	
This Dauf	prmance Expectation and essentiated Full	onco Statomonto support the fallow	ling Tack Domanda	
Task Demands				
1 Articula	Idsk te describe illustrate or select the relati	onshins interactions and/or proce	sses to be evolained. This	
may ent	ail sorting relevant from irrelevant inform	nation		
inay chu				

2	2.	Predict outcomes when the kinetic energy of an object changes, given the inferred cause and effect relationships.
3	3.	Describe, identify, and/or select information needed to support an explanation of a change in kinetic energy or energy transfer.
4	l.	Identify patterns or evidence in the data that support the claim that the kinetic energy of an object changes as energy is transferred to or from the object.
5).	Using evidence, explain the relationship between the kinetic energy of an object and changes to the object or the surroundings, as energy is transferred to or from the object.
6	.	Manipulate the components of a model to demonstrate that the kinetic energy of an object changes as energy is transferred to or from the object.

Performance	MS-PS4-1			
Expectation	Use mathematical representations to describe a simple model for waves that includes how the			
	amplitude of a wave is related to the energy in a wave.			
Dimensions	 Using Mathematics and Computational Thinking Use mathematical representations to describe and/or support scientific conclusions and design solutions. 	 PS4.A: Wave Properties A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. 	 Patterns Graphs and charts can be used to identify patterns in data. 	
Clarifications	Clarification Statements			
and Content Limits	 Emphasize describing waves with both quantitative and qualitative thinking. Examples could include using graphs, charts, computer simulations, or physical models to demonstrate amplitude and energy correlation. All equations and formulas must be provided and be age-appropriate. 			
	Content Limits			
	Assessment does not include elect	tromagnetic waves and is limited to st	andard repeating	
	 waves. Assessment does not include iden waves (mechanical, electromagne <u>Students do not need to know</u>: hc 	tifying or knowing characteristics of d etic, sonic, etc.). we two waves carrying the same energ	ifferent types of y can have different	
	amplitudes when introduced into materials of different densities and elasticities.			
Science Vocabulary Students Are Expected to Know	Speed, force, kinetic energy, proportional, sound wave, wavelength, frequency, resting position, medium, crest, trough			
Science Vocabulary Students Are Not Expected to Know	Elastic, seismic wave, oscillate.			
	Phen	omena		
Context/ Phenomena	Some example phenomena for MS-PS4-1: • The 1896 Sanriku earthquake off the height of 100 feet (30 m).	the coast of Japan generated ocean wa	aves that reached a	
	 Compared to a megaphone that sends sound messages up to 300 meters away, a Long Range Acoustic Device (LRAD) sends messages that can be heard up to 5,500 meters away. Scientists at the Swiss Federal Institute in Zurich caused a toothpick to levitate using sound 			
	waves.A wave travels down a rope from	one student to another when the first	student shakes it.	
This Per	formance Expectation and associated Evide	nce Statements support the following	Task Demands.	
	Task D	Demands		
1. Compil wave.	 Compile and analyze data to make an inference about the relationship between amplitude and energy of a wave. This may include sorting out relevant from irrelevant data in the given information. 			
2. Organi patterr	2. Organize and/or arrange (e.g., using illustrations and/or labels) or summarize data to highlight trends, patterns, or correlations that reflect how energy changes with amplitude of a wave and vice versa.			

3	Identify how wave characteristics correspond to physical observations (e.g., wave amplitude corresponds to sound volume).
4	Use relationships identified in the data to predict the energy or amplitude change of a wave if the other parameter is changed.
5	Based on data, calculate or estimate one property of a wave (energy or amplitude) and the relationships between different properties of a wave.
6	Use graphs, charts, simulations, or physical models to demonstrate amplitude and energy correlation.

Performance	MS-PS4-2			
Expectation	Develop and/or use a model to describe that waves are reflected, absorbed, or transmitted through			
	various materials.			
Dimensions	Developing	PS4.A: Wave Properties	Structure and	
	and Using	 A sound wave needs a medium through which it is 	Function	
	Models	transmitted.	 Structures can 	
	 Develop 		be designed to	
	and/or use a	PS4.B: Electromagnetic Radiation	serve particular	
	model to	• When light shines on an object, it is reflected, absorbed, or	functions by	
	predict	transmitted through the object, depending on the object's	taking into	
	and/or	material and the frequency (color) of the light.	account	
	describe	• The path that light travels can be traced as straight lines,	properties of	
	phenomena.	except at surfaces between different transparent materials	different	
		(e.g., air and water, air and glass), where the light path bends.	how materials	
		• A wave model of light is useful for explaining brightness,	can be shaped	
		color, and the frequency-dependent bending of light at a	and used.	
		surface between media.		
		• However, because light can travel through space, it cannot		
		be a matter wave, like sound or water waves.		
Clauifications	Clauifiantian Cha			
Clarifications	Clarification Statement			
Limits	 Emphasis is on both light and mechanical waves. Event loss of models could include drouving a singulations, and unittee descriptions. This 			
LIIIIIIS	 Examples of models could include drawings, simulations, and written descriptions. This includes amplitudes, frequencies, and wave lengths. 			
	Content Limits			
	Assessm	ent is limited to qualitative applications pertaining to light and n	nechanical waves,	
	not quar	ntitative.		
	Assessment does not include:			
	Particle movement and compression waves			
	Constructive or destructive interference			
Science				
Vocabulary	Retracted, medium, transparent, trequency, brightness, color, bending, amplitude, sound wave, light			
Students are	light, ray, prism.	wavelength		
Expected to	ווקות, ומץ, אוואוו, שמעכוכווצנוו.			
Know				
Science	Longitudinal wave, transverse wave, compression wave, seismic waves, radio wave, microwave			
Vocabulary	infrared, ultravio	olet, x-rays, gamma rays, angle of incidence, concave, convex, dif	fraction,	
Students are	constructive interference, destructive interference			
Not Expected				
to Know				
	Phenomena			
Context/	Some example p	henomena for MS-PS4-2:		
Phenomena	One par	t of a straw appears to be broken from the rest of the straw whe	n viewed through	
	the side of a glass of water.			
	Music placed near a lake can be heard clearly while sitting on the shore. However, while			
	swimming under the water, the sound cannot be heard as clearly.			

 Objects are more visible during a moonlit night when there is snow on the ground vs. when there is no snow on the ground.
 Loud music moves the leaves of a plant.
This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
 Select from a collection of potential model components including distractors, the components needed to model the phenomenon. Components might include type of wave, properties of the wave, the materials with which the waves interact, the position of the source of the wave, etc.
 Assemble, from a collection of potential model components, an illustration or flow chart that is capable of representing the movement, transmission, reflection, refraction, and absorption of waves. This <u>does not</u> include labeling an existing diagram.
3. Manipulate the components of a model to demonstrate the changes that cause the observed phenomenon.
4. Manipulate the components of a model to predict the behavior of waves in an alternate scenario.
5. Given models or diagrams of how a wave interacts with different materials, identify the wave properties and how they change in each scenario OR identify the properties of the different materials that cause the wave to behave differently.
6. Identify missing components, relationships, or other limitations of the model.

Performance	MS-PS4-3				
Expectation	Integrate qualitative scientific and technical information to support the claim that digitized signals				
	are a more reliable way to encode and transn	nit information than analog signals.			
Dimensions	Obtaining, Evaluating, and Communicating	PS4.C: Information Technologies	Structure and		
	Information	and Instrumentation	Function		
	 Integrate qualitative scientific and 	• Digitized signals (sent as wave	 Structures can 		
	technical information in written text with	pulses) are a more reliable way	be designed to		
	information contained in media and visual	to encode and transmit	serve particular		
	displays to clarify claims and findings.	information	functions.		
Clarifications	Clarification Statements		1		
and Content	 Emphasis is on a basic understanding 	that waves can be used for commun	ication purposes		
Limits	 Examples could include using fiber or 	tic cable to transmit light nulses rac	lio wave nulses in		
2	wifi devices and conversion of stores	hinary natterns to make sound or to	avt on a computer		
	screen	i binary patterns to make sound of th			
	 Examples could also include using vin 	yl rocord ys digital cong filos film ca	morac vs. digital		
	Examples could also include using vin	digital thermometers	meras vs. uigitai		
		. digital thermometers.			
	Contont Limits				
	According to the second	ounting			
	Assessment does not include binary to	ounting.			
	Assessment does not include the spec	cinc mechanism of any given device.			
	• <u>Students do not need to know</u> :				
	 Specifics about binary or any other coding process. 				
	o now certain mechanisms work other than the fact that they are either analog or				
	digital.				
	 Students are not responsible 	for knowing the different parts of m	echanisms: hard		
	drives, USB cables, flash drive	es, and servers.			
<u> </u>			/		
Science	Computer, machine, communicate, electricity	, device, coded, decode, conversion	convert, digitize,		
Vocabulary	encode, radio wave				
Students Are					
Expected to					
Know					
Science	Binary, emit, photoelectric, pixel, electromag	netic radiation, radiation, wave pack	et, wave source,		
Vocabulary	ohm, photon, microwave, ultraviolet, volt, an	npere.			
Students Are					
Not Expected					
to Know					
-	Phenomena				
Context/	Some example phenomena for Standard MS-	PS4-3:			
Phenomena	 A digital scale gives better precision of 	on weight measurements than analog	g.		
	 Digital films are higher quality than an 	nalog films (from a film reel).			
	Digital measurements provide precise	e values compared to analog measur	ements		
	• Digital data can be stored in a server	and easily retrieved if the hardware	breaks, while		
	analog data are lost if the hardware is broken.				
This Performance Expectation and associated Evidence Statements support the following Task Demands.					
	Task Dema	nds			

1.	Identify evidence that is sufficient to support the claim that digital signals are a more reliable way to store and transmit information than analog signals.
 2.	Citing evidence, identify specific features of digital signals that make them more reliable than analog signals OR identify specific examples of how digitization of a certain technology has advanced science.
3.	Gather, read and synthesize information from multiple sources and assess the credibility, accuracy, and possible bias of each publication; describe how they are supported or not supported by evidence.
4.	Evaluate data and/or conclusions in scientific and technical texts in light of competing information.

Performance	MS-LS1-1			
Expectation	Conduct an investigation to provide evidence that living things are made of cells; either one cell or			
	many different numbers and t	ypes of cells.		
Dimensions	Planning and Carrying Out	LS1.A: Structure and Function	Scale, Proportion, and	
	Investigations	 All living things are made up of cells, 	Quantity	
	Conduct an investigation to	which is the smallest unit that can be	 Phenomena that can be 	
	produce data to serve as	said to be alive. An organism may	observed at one scale	
	the basis for evidence that	consist of one single cell (unicellular)	may not be observable at	
	meets the goals of an	or many different numbers and	another scale.	
	investigation.	types of cells (multicellular).		
Clarifications	Clarification Statements			
and Content	Emphasis is on develop	ping evidence that living things are made	of cells, distinguishing	
Limits	between living and no one cell or many varyi	n-living things, and understanding that liv ng cells.	ing things may be made of	
	Content Limits			
	Students do not need	to know:		
	 The structures 	or functions of specific organelles or diff	erent proteins	
	 Systems of specific 	ecialized cells		
	 The mechanise 	ms by which cells are alive		
	 Specifics of DN 	IA and proteins or of cell growth and divis	sion	
	 Endosymbiotic theory 			
Science	Multicellular, unicellular, tissu	es, organ, system, organism hierarchy, ba	cteria, colonies, yeast,	
Vocabulary	prokaryote, eukaryote, magnify, microscope, DNA, nucleus, cell wall, cell membrane, algae,			
Students are	chloroplast(s), chromosomes			
Expected to				
Know	Differentiation mitoria maior		anafar DNA aratazaa	
Vocabulary	amoeba, histology, Protista, archaea, nucleoid, plasmid, diatoms, cyanobacteria.			
Students are	מחוסבטמ, הואנטוסצי, דוסנואנמ, מוכחמבמ, חונכובטונג, שומאוחונג, נומנטחוא, נימווטטמננפוומ.			
Not Expected				
to Know				
	1	Phenomena		
Context/	Some example phenomena for	r MS-LS1-1:		
Phenomena	Plant leaves and roots	have tiny box-like structures that can be	seen under a microscope.	
	 Small creatures can be seen swimming in samples of pond water viewed through a 			
	Different parts of a fre	or's body (muscles, skip, tengue, etc.) are	observed upder a	
	 Different parts of a frog's body (muscles, skin, tongue, etc.) are observed under a misroscope, and are seen to be composed of colle. 			
	One-celled organisms	(hacteria, protists) perform the eight nec	essary functions of life but	
	nothing smaller has be	een seen to do this.		
This Perfe	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
	C	Task Demands	· · · · · · · · · · · · · · · · · · ·	
1. Identity from a list, including distractors, the materials/tools needed for an investigation to find the smallest				
unit of life (cell).				

2. Identify the outcome data that should be collected in an investigation of the smallest unit of living things.

- 3. Evaluate the sufficiency and limitations of data collected to explain that the smallest unit of living things is the cell.
- 4. Make and/or record observations about whether the sample contains cells or not.*
- 5. Interpret and/or communicate data from the investigation to determine if a specimen is alive or not.

6. Construct a statement to describe the overall trend suggested by the observed data.

Performance	MS-LS1-2			
Expectation	Develop and use a model to describe the function of a cell as a whole and ways the parts of cells			
	contribute to the function.			
Dimensions	Developing and	LS1.A: Structure and Function	Structure and Function	
	Using Models	Within cells, special	 Complex and microscopic structures and 	
	Develop and	structures are responsible	systems can be visualized, modeled, and used	
	use a model	for particular functions, and	to describe how their function depends on the	
	to describe	the cell membrane forms the	relationships among its parts; therefore,	
	pnenomena.	boundary that controls what	complex natural structures/systems can be	
		enters and leaves the cell.	analyzed to determine now they function.	
Clarifications	Clarification Stat	ements		
and Content	 Emphasiz 	te the cell functioning as a whole s	system and the primary role of identified parts of	
Limits	the cell, s	specifically the nucleus, chloroplas	sts, mitochondria, cell membrane, and cell wall.	
	Content Limits			
	Assessme membrar	ent of organelle structure/function	n relationships is limited to the cell wall and cell	
	 Assessme 	ent of the function of the other or	ganelles is limited to their relationship to the	
	whole ce	. 		
	 Assessme Students 	de not nood to know: protoin syn	thesis call division (mitasis) reproduction	
	 <u>Students do not need to know</u>: protein synthesis, cell division (mitosis), reproduction (meiosis) 			
	(וווכוסוט).			
Science	Eukaryote, prokaryote, nucleus, chloroplast, mitochondrion, cell membrane, cell wall, diffusion,			
Vocabulary	osmosis, photosynthesis, cellular respiration, sugar, DNA, RNA, energy, bacteria, cytoplasm,			
Students are	organelle.			
Expected to				
Know				
Science	Golgi, ribosome, endoplasmic reticulum, enzyme, replication, mitosis, meiosis, glucose,			
Vocabulary	chromosome, pro	otein channels, lysosome, vacuole	, peroxisome, thylakoid, stroma, granum, huclear	
Not Exported	envelope, nucleo	his, hagenum, cytoskeleton, micro	puelooid plasma mombrane, extosol	
to Know	nhagocytosis en	docytosis cristae	nucleolu, plasma membrane, cytosol,	
		Phenomena		
Context/	Some example pl	nenomena for MS-LS1-2:		
Phenomena	• Skin cells act as a barrier between your insides and the outside.			
	Under a r	microscope, a muscle cell looks di	fferent than a skin cell.	
	Under a r	microscope, a root cell looks diffe	rent than a leaf cell.	
	• An E. coli	bacterium is approximately the s	ame size as the mitochondria of a mammalian	
	lung cell.			
This Performance Expectation and associated Evidence Statements support the following Task Demands.				
		Task Demands		
1. Assembl	e or complete, fro	m a collection of potential model	components, an illustration that is capable of	
represer	nting a eukaryotic (plant and/or animal) or prokaryo	tic cell in terms of the function of the cell.	
2. Select or	2. Select or identify from a collection of potential model components, including distractors, the components			
needed	needed to model the phenomenon. Components might mirror the cell wall, cell membrane, nucleus,			
chloroplast, and/or mitochondrion. This <u>does not</u> include labeling an existing diagram.				

- Manipulate the components of a model to demonstrate the changes, properties, and/or events that act to result in the phenomenon.*
- 4. Given models or diagrams of cells, identify the functions of each part of the cell.
- 5. Identify missing components, relationships, or other limitations of the model.
- 6. Describe, select, or identify the relationships among components of a model that together function as a cell.

Performance	MS-LS1-3			
Expectation	Use argument supported by evidence for how the body is a system of interacting sub-systems			
	composed of groups of cells.			
Dimensions	 Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon. 	 LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. 	 Systems and System Models Systems may interact with other systems; they may have sub-systems and be part of larger complex systems. 	
Clarifications	Clarification Statements			
and Content Limits	 Emphasis is on the concorgans specialized for pof subsystems within a second structure of subsystems within a second structure of subsystems within a second structure of subsystems and second structure of subsystems. 	eptual understanding that cells form ti articular body functions. Examples cou system and the normal functioning of t clude the mechanism of one body syste the circulatory, excretory, digestive, re	ssues and tissues form Ild include the interaction hose systems. em independent of others. espiratory, muscular and	
Science	Organization, organ, organ syste	em, response, internal cue, life-sustaini	ng functions, muscular	
Vocabulary	system, anatomy, aorta, artery, automatic, bone, bone marrow, brain, brain stem, cerebellum,			
Students are	cerebrum, circulatory system, connective tissue, cornea, digestive system, gland, lens, muscle,			
Expected to	muscle cell, reflex, sensory, skeletal system, tissue, respiratory, vertebrate, invertebrate,			
Know	reproduction, breed, neart, lungs, neart rate			
Science Vocabulary Students are Not Expected to Know	Destabilize, excitatory molecule molecule, immune system, livin protein synthesis, regulate, stab energy, excretion, limiting facto development	, feedback mechanism, hierarchical, ho g system, neural, organic compound sy iilize, stomate, system level, transform, r, voluntary muscle, pancreas, sensory	meostasis, inhibitory nthesis, protein structure, /transport matter/and or fiber, sensory nerve, root	
		Phenomena		
Context/	Some example phenomena for	MS-LS1-3:		
Phenomena	 After falling and scrapin An elephant's heart rate bigger. 	g your knee, a scab forms over the wou e is slower than a mouse's heart rate ev	und. ven though it is much	
	 A person swallows their while hanging upside do 	food while doing a handstand, but a b own.	ird cannot swallow food	
	 When a person hasn't e "growling" sound. 	aten in a few hours and is hungry, thei	r stomach makes an audible	
This Perfor	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
		Task Demands		
1. Based of tissues,	n the provided data, identify, descord organs and bodily function(s).	cribe or illustrate a claim regarding the	relationship between cells,	
2. Identify, relations	summarize, or organize given da ship between cells, tissues, organ	ta or other information to support or re s and bodily function(s).*	efute a claim regarding the	

3	Sort inferences about the relationship between body systems into those that are supported by the data, contradicted by the data, or neither, or some similar classification.*	
4	Select supporting evidence from competing sources based on the reliability of statistical relationships, he representative the sample is, or study design to show how the body is a system of interacting subsystem	SW
5	Construct an argument using scientific reasoning drawing on credible evidence to explain the relationshi of interacting subsystems in a body such as tissues and organs. (Hand scored CR) *	ps
6	Identify additional evidence that would help clarify, support, or contradict a hypothesized relationship o causal argument regarding the interactions of subsystems in the body.	r
7	Identify or describe alternate explanations and the data needed to distinguish among them in order to explain how body system functions.	

Performance	MS-LS1-4		
Expectation	Use argument based on empirica	al evidence and scientific reasoning t	o support an explanation for
	how characteristic animal behav	iors and specialized plant structures	affect the probability of
	successful reproduction of animation	als and plants respectively.	
Dimensions	Engaging in Argument from	LS1.B: Growth and Development	Cause and Effect
	Evidence	of Organisms	 Phenomena may have more
	 Use an oral and written 	• Animals engage in characteristic	than one cause, and some
	argument supported by	behaviors that increase the	cause and effect
	empirical evidence and	odds of reproduction.	relationships in systems can
	scientific reasoning to	Plants reproduce in a variety of	only be described using
	support or refute an	ways, sometimes depending on	probability.
	explanation of a model for a	animal behavior and specialized	
	a problem	leadures for reproduction.	
Clarifications	Clarification Statements:		
and Content	• Examples of behaviors t	hat affect the probability of animal re	eproduction could include: nest
Limits	building to protect youn	g from cold, herding of animals to pr	otect young from predators,
	and vocalization of anim	als and colorful plumage to attract n	nates for breeding.
	 Examples of animal beha 	aviors that affect the probability of p	lant reproduction could include:
	transferring pollen or se	eds, and creating conditions for seed	l germination and growth.
	Examples of plant struct	ures could include: bright flowers att	tracting butterflies that transfer
	pollen, flower nectar and	d odors that attract insects that trans	sfer pollen, and hard shells on
	nuts that squirrels bury.		
	Content Limits:		
	Data analysis should be	limited to calculations and interpreta	ation of measures of central
	tendency.		
	 Students are only expect 	ted to understand probability as exp	ected relative frequency.
	 Students can be asked to 	o evaluate whether sample data are	representative and the limits to
	which findings can be ge	eneralized.	
	 Data sets can include no 	t only common trends but also outlie	ers and anomalous data points.
	<u>Students do not need to</u>	know: Mechanisms or patterns of in	heritance, meiosis, specific
	reproductive structures	not detailed within this document (e	.g., nuptial pads, dulap),
	detailed life cycles.		
Ceienee	Next boud meter buood washed	ility hohovies solles flower sotal	and furth poster construction
Science	Nest, nerd, mate, breed, probab	llity, behavior, pollen, flower, petal, s	seed, fruit, nectar, germination,
Students are	vocalization, plumage, polimatio	11	
Expected to			
Know			
Science	Symbiosis, mutualism. commens	alism, parasitism, gametophyte. spo	rophyte, carpal, sepal, pistil,
Vocabulary	anther, stamen, ovule, "alternat	ion of generations," sporangia, mon	pecious, dioecious.
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenomena for N	MS-LS1-4:	
Phenomena			

	 Spring peepers (<i>Pseudacris crucifer</i>) in South Georgia, North Georgia, and Eastern Kentucky begin vocalizing (breeding) at different times of the year. Female poison arrow frogs lay their eggs in leaf litter. When they hatch, male poison arrow frogs herd the tadpoles onto their backs and transport them to bromeliads, where they develop into adulthood. The proportion of trees that are pollinated by insects decreases with latitude (phenomenon would be data tables that illustrate this relationship). The Aspen tend to be one of the first plants to emerge after a forest fire.
This F	Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Base	ed on the provided data, identify, describe or illustrate a claim regarding the relationship between a
ropr	accensic annual benavior and/or specialized plant structure and the probability of successful adjustion in the species
2 Idon	tify summarize or organize given data or other information to support or refute a claim regarding the
relat	tionship between a characteristic animal behavior and/or specialized plant structure and the probability of essful reproduction in the species.
3. Sort	inferences about the relationship of behaviors or structures to breeding success into those that are
supp	ported by the data, contradicted by the data, or neither, or some similar classification.
4. Sele repr	ct supporting evidence from competing sources based on the reliability of statistical relationships, how esentative the sample is, or study design.
5. Cons anin	struct an argument using scientific reasoning drawing on credible evidence to explain the relationships of nal behaviors or plant structures to reproductive success. (Hand scored CR)
6. Iden caus	tify additional evidence that would help clarify, support, or contradict a hypothesized relationship or al argument.
7. Iden	tify or describe alternate explanations and the data needed to distinguish among them.

Performance	MS LS1-5			
Expectation	Construct a scientific explanation based on evidence for how environmental and genetic factors			
	influence the growth of organisms.			
Dimensions	Constructing Explanations and Designing	LS1.B: Growth and	Cause and Effect	
	Solutions	Development of	 Phenomena may 	
	• Construct a scientific explanation based on valid	Organisms	have more than one	
	and reliable evidence obtained from sources	 Genetic factors as 	cause, and some	
	(including the students' own experiments) and	well as local	cause and effect	
	the assumption that theories and laws that	conditions affect the	relationships in	
	describe the natural world operate today as	growth of the adult	systems can only be	
	they did in the past and will continue to do so in	plant.	described using	
	the future.		probability.	
Clarifications	Clarification Statements		I	
and Content	Examples of local environmental conditions	s could include availability	of food, light, space,	
Limits	and water.			
	 Examples of genetic factors could include la growth of organisms. 	arge breed cattle and spec	cies of grass affecting	
	Examples of evidence could include a droug	ght decreasing plant grow	th, fertilizer increasing	
	plant growth, different varieties of plant se	eds growing at different r	ates in different	
	conditions, and fish growing larger in large	ponds than they do in sm	all ponds.	
	Content Limits			
	Assessment does not include genetic mecha	anisms, gene regulation, o	or biochemical	
	processes.			
	Assessment does not include Punnett square	res.		
	<u>Students do not need to know</u> : epigenetics	or variations of gene exp	ression.	
Science	Gene, genetics, genome, genotype, phenotype, env	vironment, growth, develo	opment, DNA.	
Vocabulary				
Students are				
Expected to				
Know	Friendetic DNA construction shotowariad			
Vocabulary	Epigenetics, RNA, gene expression, photoperiod.			
Students are				
Not Expected				
to Know				
	Phenomena			
Context/	Phenomena for this performance expectation shou	ld include two groups of a	a particular organism	
Phenomena	with one environmental change.			
	Some example phenomena for MS-LS1-5:			
	An orchard contains both full-sized and dwa	arf apple trees. Individual	s of both types of tree	
	grow shorter and produce fewer apples wh	en planted on a dry hillsic	te, and grow taller and	
	produce more apples when planted on the	snore of a pond. (i.e., the	full apple trees on the	
	pond).	production as the dwart	apple trees by the	
	Only about 90% of identical twins each have	e the same height.		

	 A group of poinsettias and daisies are grown in the same greenhouse. The poinsettias bloom when exposed to ten consecutive hours of light, but the daisies bloom when exposed to 14 consecutive hours of light. Burrs are dispersed to different environments by traveling on the fur of mammals. Some seeds from a burr plant drop off into a sunny field, while others drop off into a shady patch of woods. The burr plants that grew in the sun are taller and produced more burrs than those that grew in the shade.
This Perfo	ormance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Articulat betweer	e, describe, illustrate, or select genetic and/or environmental influences on phenotypic differences organisms. This may entail sorting relevant from irrelevant information.
 Explain t supporti 	he process by which genetic factors and/or local conditions cause the observed phenomenon, ng the explanation with valid and reliable evidence (hand scored).
3. Identify develop	evidence that supports the inference that genetic and environmental factors influence growth and ment of organisms. Environmental factors may include food, light, space, and water.
4. Describe phenoty	e, identify, and/or select information from one or more sources to support an explanation for pic differences in organisms related to genetic and environmental factors.

Performance	MS-LS1-6		
Expectation	Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of		
	matter and flow of energ	y into and out of organisms.	
Dimensions	Constructing	LS1.C: Organization for Matter and Energy Flow in	Energy and
	Explanations and	Organisms	Matter
	Designing Solutions	Plants, algae (including phytoplankton), and many	• Within a
	Construct a scientific	microorganisms use the energy from light to make	natural
	explanation based on	sugars (food) from carbon dioxide from the	system. the
	valid and reliable	atmosphere and water through the process of	transfer of
	evidence obtained	photosynthesis, which also releases oxygen. These	energy drives
	from sources	sugars can be used immediately or stored for growth	the motion
	(including the	or later use.	and/or
	students' own		cycling of
	experiments) and the	PS3.D: Energy in Chemical Processes and Everyday Life	matter
	assumption that	• The chemical reaction by which plants produce	indeteri
	theories and laws that	complex food molecules (sugars) requires an energy	
	describe the natural	input (i.e. from sunlight) to occur. In this reaction	
	world operate today	carbon dioxide and water combine to form carbon-	
	as they did in the past	hased organic molecules and release	
	and will continue to	oxygen (secondary)	
	do so in the future.	oxygen (secondary).	
Clarifications	Clarification Statements		
and Content	 Emphasis is on tracing movement of matter and flow of energy. 		
Limits	 Students are able to identify relationships between dependent and independent variables. 		
	Content Limits		
	Assessment does not include the biochemical mechanisms of photosynthesis.		
	Assessment does not include the carbon cycle or nitrogen fixation.		
	• <u>Students do not need to know:</u> how to balance chemical equations.		
Science	Glucose, algae, consumer	r, product, transformation, conservation, convert, decomp	oser, aquatic,
Vocabulary	organic, phytoplankton, p	producer, reaction, carbon, carbon dioxide, chemical proce	ss, chemical
Students are	reaction, molecule, nutrie	ent, moisture, structure, organic matter, stimulus, tissue, h	ydrogen
Expected to			
Know			
Science	Biomass, biological molec	cule, compound, flow of matter, hydrocarbon, net transfer,	,
Vocabulary	photosynthesizing organi	sm, carbon cycle, efficient, excitatory molecule, molecular	synthesis,
Students are	organic compound synthe	esis, stomata	
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenome	na for MS-LS1-6:	
Phenomena	A plant is kept in	a clear, closed container that allows sunlight to pass throu	gh. After one
	week, the plant is	s dead. A mouse kept alone in the same container also dies	. However, a
	plant and mouse	kept together in the same container after one week are all	ve.
	• The plant <i>Elodea</i>	releases bubbles at an increased rate when an aquatic ani	mal is added to
	the same aquariu	ım.	

 A plant grows in a pot of soil for one month. Only water is added to the pot. After one month, the plant has gained mass, while the mass of the soil has barely changed. A plant leaf kept in the light contains large amounts of starch, while a leaf kept in the dark does not.
This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
 Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features of the reactants and products.
 Express or complete a description of the flow of energy and/or matter among organisms. This may include indicating directions of causality in an incomplete model (including food webs), such as a flow chart or diagram.
3. Identify evidence that photosynthesis cycles matter and energy through an ecosystem.
4. Select, identify, or describe the predicted effect of a change of conditions on the flow of energy and matter among organisms.
5. Describe, identify, and/or select information needed to support an explanation.

Performance	MS-LS1-7		
Expectation	Develop a model to describe how food is rearranged through chemical reactions to form new		
	molecules that su	upport growth and/or release energy as this matter moves through	an organism.
Dimensions	Developing and	LS1.C: Organization for Matter and Energy Flow in Organisms	Energy and
	Using Models	• Within individual organisms, food moves through a series of	Matter
	• Develop a	chemical reactions in which it is broken down and rearranged	 Matter is
	model to	to form new molecules, support growth, or release energy.	conserved
	describe		because
	unobservable	PS3.D: Energy in Chemical Processes and Everyday Life	atoms are
	mechanisms.	• Cellular respiration in plants and animals involves chemical	conserved in
		reactions with oxygen that release stored energy. In these	physical and
		processes, complex molecules containing carbon react with	chemical
		oxygen to produce carbon dioxide and other materials.	processes.
		(secondary)	
Clarifications	Clarification Stat	ements	
and Content	Emphasis	s is on the describing that describing that molecules are broken apa	irt and put back
Limits	together	and that in this process energy is released.	
	Contont Limite		
		ant does not include details of the chemical reactions for photosym	thesis or
	respiratio	n	
	 Students 	do not need to know: enzymes. ATP synthase, metabolism, bioche	mical pathways.
	redox rea	actions, molecular transport, specific enzymes involved, catalysts	
Science	Oxygen, carbon c	lioxide, water, sugar, glucose (including chemical formula), ATP, ch	emical bonds,
Vocabulary	photosynthesis, p	proteins, enzymes, organelles, nucleus, DNA, mitochondria, cytosol	, cytoplasm,
Students are	nitrogen		
Expected to			
Know			
Science	Biochemical, fatt	y acids, oxidizing agent, electron acceptor, biosynthesis, locomotio	n,
Vocabulary	phosphorylation,	electron transport chain, chemiosmosis, pyruvate, pentose, adenii	reducing agent
Not Expected	anno acio, rementation, aeropic respiration, reductions, oxidation, reduction, reducing agent, oxidizing agent NAD+ transport chain glycolysis, citric acid cycle, oxidative phosphorylation		
to Know	substrate-level n	hosphorylation acetyl CoA cytochromes chemiosmosis ATP synth	ase lactic acid
	Substrate level p	Phenomena	
Context/	Some example pl	henomena for MS-LS1-7:	
Phenomena	 A young 	plant is grown in a bowl of sugar water. As it grows, the amount of	sugar in the
	water de	creases.	
	A person	feels tired and weak before they eat lunch. After they eat some from	uit, they feel
	more ene	ergetic and awake.	
	An athlet	e completing difficult training feels that their muscles recover and	repair faster
	when the	ey eat more high-protein foods in a day compared to when they ea	t less protein in a
	day.	and many side of face of the property of the AMP and face of the second states that the	
	Amoeba hogin to	are provided tood in a petri disn. When ted, the amoeba become n	nore active and
	begin to	grow and divide	
This Perfe	I prmance Expectation	on and associated Evidence Statements support the following Task	Demands
		Task Demands	e cinanas.

1.	Select or identify from a collection of potential model components, including distractors, the components needed to model the phenomenon. Components might include gases, sugars, and organelles.
2.	Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing the transformation of food + oxygen into energy and/or new compounds. This does not include labeling an existing diagram.
3.	Manipulate the components of the model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.
4.	Make predictions about the effects of changes in the type or amount of a certain component in the model. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.
5.	Given models or diagrams of the state of model components, identify the properties of the system that give rise to the phenomenon.
6.	Identify missing components, relationships, or other limitations of the model.
7.	Describe, select, or identify the relationships among components of a model that describe or explain how food can be turned into energy for new growth and other activities.

Performance	MS-LS1-8		
Expectation	Gather and synthesize information that sensory receptors respond to stimuli by sending messages		
Dimensions	Obtaining Evaluating and	IS1.D: Information Processing	Cause and Effect
Dimensions	 Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. 	• Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.	Cause and effect relationships may be used to predict phenomena in natural systems.
Clarifications	Content Limits		
and Content Limits	 Assessment does not include me receptors to the brain. Students do not need to know: Se 	echanisms for the transmission of informers	nation from sensory n potentials, sensory
	and motor cortices in the brain.		
Science	Memory, perception, transmit, accuracy	, immediate, nerve, receptor, sense rec	eptor, sensory,
Vocabulary	behavioral response to stimuli, electrom	agnetic, stimulus, short-term memory,	long-term memory,
Students are	salt, sour, sweet, bitter, brain, nervous s	ystem, taste, smell, touch, hear, sight	
Expected to			
Science	Neuron neurotransmitter endocrine sig	inaling synapse axon olfactory rods o	ones trichromatic
Vocabulary	vision, retina, hair cells, cochlea, fight-or	-flight response, sensitization, depolariz	zation. taste
Students are	papillae, umami,		,
Not Expected			
to Know			
	Phene	omena	
Context/	Some example phenomena for MS-LS1-8	3:	
Phenomena	A woman closes her eyes and to	uches the tip of her nose with her index	finger.
	 A student is studying in a library. 	. The fire alarm goes off and he involunt	arily jumps out of
	 A woman walking past a bakery 	smells cinnamon and is instantly remind	led of her
	grandmother's house.		
	 A driver sees a stoplight change 	from green to red and quickly moves hi	s foot from the
	accelerator pedal to the break.		
This Perfo	rmance Expectation and associated Evider	nce Statements support the following Ta	ask Demands.
	Task D	emands	
 Analyze charts, s 	and interpret scientific evidence from mul ymbols and mathematical representations	ltiple scientific/technical sources includi s to describe how external stimuli are se	ing text, diagrams, ensed by the brain.
2. Assembl external	e or complete an illustration or flow chart stimuli.	representing physiological or behavior	al responses to
3. Based or relations	n the information provided, identify or des ship between an external stimulus, sensor	scribe supporting evidence for an argum y receptors and/or a particular behavio	ient regarding the r.

4.	Make predictions about the effects on sensory receptors, immediate behavior, or memory storage as a result of changes to an external stimulus. Predictions can be quantitative or qualitative and can be made by completing illustrations, or selecting from lists with distractors.
5.	Evaluate the validity, credibility, accuracy, relevancy and/or possible bias of scientific/technical sources.
6.	Synthesize an explanation regarding sensory stimuli that incorporates scientific evidence from multiple sources.
7.	Identify, summarize, or organize given data or other information to support or refute a claim relating the characteristics of an external stimulus to a sensory pathway.

Performance	MS-LS2-1		
Expectation	Analyze and interpret data to provide evidence for the effects of resource availability on organisms		
	and populations of	organisms in an ecosystem.	
Dimensions	Analyzing and	LS2.A: Interdependent Relationships in Ecosystems	Cause and Effect
	Interpreting Data	• Organisms, and populations of organisms, are dependent	 Cause and
	 Analyze and 	on their environmental interactions, both with other living	effect
	interpret data	things and with nonliving factors.	relationships
	to provide	• In any ecosystem, organisms and populations with similar	may be used to
	evidence of	requirements for food, water, oxygen, or other resources	predict
	phenomena.	may compete with each other for limited resources,	phenomena in
		access to which consequently constrains their growth and	natural or
		reproduction.	designed
		• Growth of organisms and population increases are limited	systems.
		by access to resources.	
Clarifications	Clarification Staten	nents	
and Content	Emphasis is	s on cause and effect relationships between resources and gr	owth of individual
Limits	organisms,	and the numbers of organisms in ecosystems during period	s of abundant and
	scarce reso	urces.	
	 Examples could include water, food, and living space 		
	Content Limits		
	 Assessment does not include mathematical and/or computational representations of factors 		
	• Assessment does not include mathematical and/or computational representations of factors related to carrying capacity of ecosystems of different sizes (including deriving mathematical		
	equations to make comparisons).		
Science	Resource, competition, ecosystem, nutrient, food chain/web, producer, consumer		
Vocabulary			
Students are			
Expected to			
Know			• • • • • • • • •
Science	Biotic component, abiotic component, exponential (AKA "logistic") growth, ecological niche,		
Vocabulary	resource partitionin	ng, fundamental niche, realized niche, carrying capacity, intersp	Decific
Not Exported	competition, intras	pechic competition, biomass, carrying capacity	
to Know			
		Phenomena	
Context/	The phenomena for this performance expectation <i>are</i> the given data. Samples of phenomena		
Phenomena	should describe the	e data set(s) to be given in terms of patterns or relationships to	be found in the
	data, and the colun	nns and rows of a hypothetical table presenting the data, even	if the presentation
	is not tabular. The description of the phenomenon should describe the presentation format of the		
	data (e.g., maps, ta	bles, graphs, etc.).	
	Some example phe	nomena for MS-LS2-1:	
	On the nort	th Atlantic coastline, two species of barnacles live at different c	lepths
	Cheetahs a	nd leopards in the savannah use the same watering holes.	
	After a dro	ught period, the population of grasshoppers is halved.	
	A garden is	cleared of aphids. After a few days, the ladybirds in the surrou	nding trees are
	gone.		

This Performance Expectation and associated Evidence Statements support the following Task Demands.		
Task Demands		
 Organize and/or arrange (e.g., using illustrations and/or labels), or summarize data to highlight trends, patterns, or correlations between resource availability and the growth of a population or populations of organisms. 		
7. Generate or construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations between resource availability and the growth of a population or populations of organisms. This may include sorting out distractors.*		
 Use relationships identified in resource/population data to predict the change in a population or populations or the change in resources that resulted in a change in populations.** 		
 Identify patterns or evidence in the data that supports inferences and explanations about how resource availability affects a population of organisms.* 		
10. Construct or identify testable questions that can be asked to collect data about how resource availability may affect the growth of a population or populations of organisms.		
11. Identify, describe, or select from a collection characteristics to be manipulated or held constant while gathering information to answer a well-articulated question.*		
12. Select or describe inferences relevant to the question posed and supported by the data, especially inferences about causes and effects.		
13. Select, identify, or describe predicted outcomes when specific changes in resource availability occur, using inferences about cause and effect relationships involving those resources.**		
*denotes those task demands which are deemed appropriate for use in stand-alone item development		

**TD3 and TD8 must be used together.

Performance	MS-LS2-2		
Expectation	Construct an explanation that predicts patterns of interactions among organisms across multiple		
	ecosystems.		
Dimensions	Constructing	LS2.A: Interdependent Relationships in Ecosystems	Patterns
	Explanations and	 Similarly, predatory interactions may reduce the 	 Patterns can be
	Designing Solutions	number of organisms or eliminate whole	used to identify
	 Construct an 	populations of organisms. Mutually beneficial	cause and effect
	explanation that	interactions, in contrast, may become so	relationships.
	includes qualitative	interdependent that each organism requires the	
	or quantitative	other for survival. Although the species involved in	
	relationships	these competitive, predatory, and mutually	
	between variables	beneficial interactions vary across ecosystems, the	
	that predict	patterns of interactions of organisms with their	
	phenomena.	environments, both living and nonliving, are shared.	
Clarifications	Clarification Statement		
and Content	Emphasis is on	predicting consistent patterns of interactions in different	t ecosystems in
Limits	terms of the re	lationships among and between living organisms and noi	nliving components
	of ecosystems.	Crans and	
	 Examples of type bonoficial 	bes of interactions could include competitive, predatory,	and mutually
	Deficital.		
	Content Limits		
	Analysis may in	clude recognizing natterns in data specifying and explain	ning relationshins
	 Analysis may include recognizing patterns in data, specifying and explaining relationships, making logical predictions from data, retrieving information from a table, graph or figure and using it to explain relationships, generating hypotheses based on observations or data, and generalizing a pattern. Analysis should not include relating mathematical or scientific concepts to other content 		
	areas.		
Science	relative, disperse, ecolo	ogical role, host, infection, mutualism, mutually beneficia	l, parasite, evolve,
Vocabulary	genetic, interdependent		
Students are			
Expected to			
Know	ahiatia		
Science	abiotic		
Students are			
Not Exported			
to Know			
		Phenomena	
Context/	FileHolliella For this performance expectation, the phenomena are sets of data. Those are the observed facts		
Phenomena	that the students will lo	pok at to discover patterns. Below, we enumerate some of	of the patterns that
	might comprise the dat	a sets (phenomena) to be analyzed. Patterns should be c	observed across at
	least two different envi	ironments/habitats.	
	Patterns that describe t	the data sets for MS-LS2-2:	
	The tongue of t	he alligator snapping turtle looks like a small worm. The	turtle uses this
	tongue to lure	prey close to its mouth. (Predation)—also angler fish.	

	 Higher density of squirrels in oak environment than in maple environment. Hippopotamuses spend time in both aquatic and savannah ecosystems. When found in aquatic environments, they're often surrounded by carp. When found in a savannah environment, they're often surrounded by oxpeckers. In Ecuador's Andean Cloud Forest, a hummingbird feeds on the nectar of an orchid flower (<i>Epidendrum secundum</i>). In the Madagascar, a similar orchid flower (<i>Angraecum sesquipedale</i>) is seen, but no hummingbirds are found. 	
	This Performance Expectation and associated Evidence Statements support the following Task Demands.	
	Task Demands	
1.	Articulate, describe, illustrate, or select the relationships or interactions to be explained. This may entail sorting relevant from irrelevant information or features.	
2.	Express or complete a causal chain common or distinct across organisms or environments. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram or completing cause and effect chains.*	
 Identify evidence supporting the inference of causation of patterns of interactions among organisms across multiple ecosystems expressed in a causal chain.* 		
4.	Use an explanation to predict interactions among different organisms or in different environments.	
5.	Describe/Identify/Select information needed to support an explanation of patterns of interactions among organisms across multiple ecosystems.	

Performance	MS-LS2-3		
Expectation	Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts		
	of an ecosystem.		
Dimensions	Developing and	LS2.B: Cycle of Matter and Energy Transfer in Ecosystems	Energy and Matter
	Using Models	• Food webs are models that demonstrate how matter and	 The transfer of
	 Develop a 	energy are transferred among producers, consumers,	energy can be
	model to	and decomposers as the three groups interact within an	tracked as energy
	describe	ecosystem. Transfers of matter into and out of the	flows through a
	phenomena.	physical environment occur at every level. Decomposers	natural system.
		recycle nutrients from dead plant or animal matter back	
		to the soil in terrestrial environments or to the water in	
		aquatic environments. The atoms that make up the	
		organisms in an ecosystem are cycled repeatedly	
		between the living and nonliving parts of the ecosystem.	
Clarifications	Clarification Stater	nents	1
and Content	Emphasize	food webs and the role of producers, consumers, and decomp	oosers in various
Limits	ecosystems	5.	
	Emphasis is	s on describing the conservation of matter and flow of energy	into and out of
	various ecosystems, and on defining the boundaries of the system.		
	Content Limits		
	• Students do not need to identify biomes or to know information about specific biomes.		
	 Assessment does not include The use of chemical reactions to describe the processes. 		
	 Identification of trophic levels, understanding of the relative energies of the trophic 		
	levels, nor the knowledge of the 10% energy transfer between trophic levels.		
	 The process of bioaccumulation. 		
Science	Producer, consumer, decomposer, herbivore, omnivore, carnivore, algae, fungi, microbe,		
Vocabulary	microorganism, organic matter, organic waste, photosynthesis, atom, molecule, sugar, carbon, carbon		
Students Are	dioxide, nitrogen, oxygen, predator, prey, aquatic, interdependent, chemical reaction, reactant,		
Expected to	product		
Know			
Science	Biotic, abiotic, trophic level, energy pyramid, nitrogen fixation, exothermic/endothermic, detritivores,		
Vocabulary	biomass, bioaccum	ulation/biomagnification, autotroph/heterotroph, biosphere,	hydrosphere,
Students Are	geosphere, aerobic	, anaerobic, phosphorous, phytoplankton.	
Not Expected			
to know		Dhanamana	
Context/	Some example pho	nomena for MS-I S2-3:	
Phenomena	• In the Alas	can tundra more grass and wildflowers grow on top of unders	pround fox dens than
	elsewhere.		
	 In July, a co 	olony of lava crickets is found to inhabit lava flows from a May	eruption, but the
	first plant o	loes not appear in the area until November.	
	Fox-inhabit	ed islands in the Aleutian Islands have less vegetation than isl	ands not inhabited
	by foxes.		
	Giant clams	s and tube worms are found in the darkest parts of the oceans	s in the hot water
	near hydro	thermal vents.	

	This Perf	ormance Expectation and associated Evidence Statements support the following Task Demands.
		Task Demands
1.	Identify,	assemble, or complete from a collection of potential model components, including distractors,
	compon	ents of a food-web model that describe transfers of matter and/or energy among producers,
	consume	ers, decomposers, or some subsets of those, potentially including transfers between living and
	nonlivin	g organisms.
2.	Describe	, select, or identify the relationships among components of a food-web model that describes how parts
	of the fo	od web (producers, consumers, and decomposers) interact to continually cycle matter and to transfer
	energy a	mong living and nonliving parts of an ecosystem.
3.	Manipul	ate the components of a food-web model to demonstrate how the interactions among producers,
	consume	ers, and/or decomposers result in changes to the cycling of matter and/or transfer of energy among
	living an	d nonliving parts of an ecosystem.
4.	Select, d	escribe, or illustrate predictions about the effects of changes in the organisms or nonliving components
	of the er	vironment on the cycling of matter, transfer of energy, and/or other organisms in the environment.
	Predictio	ons can be made by manipulating model components, completing illustrations, or selecting from lists
	with dist	ractors.
5.	Select or	identify missing components or relationships of a food web model that describes the transfers of
	matter a	nd/or energy among living and nonliving parts of an ecosystem.

Performance	MS-LS2-4		
Expectation	Construct an argument supported by empirical evidence that changes to physical or biological		
	components of an ecosystem affect p	opulations.	
Dimensions	Engaging in Argument from	LS2.C: Ecosystem Dynamics,	Stability and Change
	Evidence	Functioning, and Resilience	 Small changes in one
	 Construct an oral and written 	 Ecosystems are dynamic in 	part of a system might
	argument supported by empirical	nature: their characteristics can	cause large changes in
	evidence and scientific reasoning	vary over time. Disruptions to	another part.
	to support or refute an	any physical or biological	
	nhenomenon or a solution to a	component of an ecosystem	
	problem	populations	
		populations	
Clarifications	Clarification Statements		
and Content	 Emphasis is on recognizing pa 	atterns in data and making warranted	d inferences about changes
Limits	in populations, and on evalua	ting empirical evidence supporting a	rguments about changes
	to ecosystems.		
	Contont Limits		
	Assessment does not include	the use of chemical reactions to des	cribe the processes
		the use of chemical reactions to des	clibe the processes.
Science	Predator, prey, mutually beneficial interactions, competition, consumers, producers, decomposers,		
Vocabulary	biodiversity.		
Students are			
Expected to			
Know			
Vocabulary	Carrying capacities, anthropogenic ch	anges, biomass	
Students are			
Not Expected			
to Know			
Phenomena			
Context/	Example Phenomena for MS-LS2-4:		
Phenomena	 After a beaver builds a dam, t 	he amount and diversity of fish life i	n a stream increases.
	After wolves were reintroduc	ed to Yellowstone, there were more	willows.
	 Ine number of willows has in introduction; hoover nonulation 	creased in Yellowstone. (Give two co	ompeting hypotheses: wolf
	As the Aral Sea declined in size	on increase).	sed and the Aral trout is
	no longer present in the lake.	e since the 1900s, samily has increa	
This Perfo	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Tas	sk Demands	
1. Articulat	te, describe, illustrate, or select the rela	ationships, interactions, and/or proce	esses to be explained. This
may ent	all sorting relevant from irrelevant into	rmation or information supporting/r	eruting one or more
2. Predict of	outcomes when changes to an ecosyste	em occur, given the inferred cause ar	nd effect relationships.*
3. Identify	select, and/or describe information or	evidence needed to support one or	more potentially
competi	ng explanations.		. ,

- Identify patterns of information/evidence in the data that support correlative/causative inferences about the relationships among the pertinent parts of an ecosystem.*
 - 5. Organize and/or arrange (e.g., using illustrations and/or labels) or summarize population data to highlight trends, patterns, or correlations.

Performance	MS-LS2-5		
Expectation	Evaluate competing desig	gn solutions for maintaining biodiversity and ecosystem se	ervices.
Dimensions	 Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. 	 LS2.C: Ecosystem Dynamics, Functioning, and Resilience Biodiversity describes the variety of species found in Earth's terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. LS4.D: Biodiversity and Humans Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, fresh air and water (secondary). ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem (secondary). 	Stability and Change • Small changes in one part of a system may cause a large change in another part.
Clarifications and Content Limits	 Clarification Statements Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. Content Limits Students do not need to know: specific policies or specific details of organisms. 		
Science Vocabulary Students Are Expected to Know	Habitats, niche, native species, non-native or invasive species		
Vocabulary Students Are Not Expected to Know	specific species futiles, s	peche resource of habitat requirements for any species.	
		Phenomena	
Context/ Phenomena	Engineering performance expectations are built around meaningful design problems rather than phenomena. In this case, the design problems involve preserving ecosystems and protecting biodiversity. For this performance expectation, the design problem and competing solutions replace phenomena.		ns rather than protecting solutions replace
 Some example design problems for MS-LS2-5: Giant African Land Snails were brought to Florida by a boy who smuggled t Florida. His grandmother released these into a garden and the snail popula snails eat over 500 plant species, tree bark, paint, and even stucco. Florida four solutions: 		hree snails into ation exploded. The has implemented	

	 Trained dogs that sniff out snails for capture. Chemicals applied to plants that the snails feed upon. Predatory species to eat the snails. The brown tree snake was accidentally brought to the island of Guam by ships during World War II, fed on native birds until the Guam rail, a native bird, nearly went extinct in 1984. Guam has implemented two solutions: Feed rats acetaminophen and drop them into wooded areas. Bring in predatory species to eat the snakes. Cheatgrass, a type of weed that was brought to the United States in the late 1800s, has spread all over Utah from the desert valleys to the mountains, growing faster than most native plants. Utah has implemented two solutions: Use genetically modified seeds for certain native seeds that are heartier than the Cheatgrass to push out the Cheatgrass seeds. Controlled application of herbicides. Asian carp is an aggressive fish species introduced in 1960 to control weed populations in waterways in southern fish farm ponds. The population was sterilized but a few fertile fish escaped into the Mississippi River and migrated north towards the Great Lakes. Asian carp are an invasive species that compete with native fish in the Great Lakes and threaten the ecosystem balance. Regions around the Great Lakes are implementing strategies:				
This	Performance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands				
1. Ide des	ntify or assemble from a collection, including distractors, the relevant aspects of the problem that, given sign solutions if implemented, will resolve/improve maintaining biodiversity and ecosystem services.				
2. Usi tha	ng given information for maintaining biodiversity and ecosystem services, select or identify constraints it the device or solution must meet.				
3. Usi aga	ng the given information for maintaining biodiversity and ecosystem services, select or identify the criteria ainst which the device or solution should be judged.				
4. Col ecc	npare, rank, or otherwise evaluate the different design solutions for maintaining biodiversity and osystem services against the identified criteria.				
5. Sel ide	Select or propose a recommended course of action supported by the design solution's ability to meet identified criteria.				
Performance	MS-LS3-1				
----------------	--	---	---------------------------------	--	--
Expectation	Develop and use a model to describe why structural changes to genes (mutations) located on				
	chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the				
	structure and function of an organism.				
Dimensions	Developing	LS3.A: Inheritance of Traits	Structure and Function		
	and Using a	• Genes are located in the chromosomes of cells, with	 Complex and 		
	Model	each chromosome pair containing two variants of	microscopic structures		
	• Develop and	each of many distinct genes. Each distinct gene	and systems can be		
	use a model	chiefly controls the production of specific proteins,	visualized, modeled,		
	to describe	which in turn affects the traits of the individual.	and used to describe		
	phenomena.	Changes (mutations) to genes can result in changes to	how their function		
		proteins, which can affect the structures and	depends on the shapes,		
		functions of the organism and thereby change traits.	composition, and		
			relationships among		
		LS3.B: Variation of Traits	their parts; therefore,		
		 In addition to variations that arise from sexual 	complex natural		
		reproduction, genetic information can be altered	structures/systems can		
		because of mutations. Through rare, mutations my	be analyzed to		
		result in changes to the structure and function of	determine how they		
		proteins. Some changes are beneficial, others	function.		
		harmful, and some neutral to the organism.			
Clarifications	Clarification Statements				
and Content	Emphasis is on the conceptual understanding that changes in genetic material may result in				
Limits	making different proteins.				
	Content Limits				
	Assessr	Assessment does not include specific changes of genes at the molecular level, mechanisms for protoin synthesis, and specific types of mutations			
	for protein synthesis, and specific types of mutations.				
	Do not use examples of mutations in humans.				
	Analysis does not include species-level sources of genetic variation, including the founder				
	effect, bottleneck, genetic drift or Hardy-Weinberg equilibrium.				
Science	Conomo gonot	tune phonetune DNA pediares parent generation trait r	acitiva pogativa poutral		
Vocabulary	nollination Dur	spet square, dominant trait, recessive trait, allele	Jositive, negative, neutral,		
Students are	poliliation, Pul	inett square, uoniniant trait, recessive trait, anele			
Expected to					
Know					
Science	RNA transcript	ion translation mitosis meiosis internhase prophase m	etanhase, ananhase		
Vocabulary	telophase cyto	kinesis, zvgote fertilization, codominance incomplete dor	ninance, sequencing F1		
Students are	E2 hanloid dinloid enigenetics plasmid				
Not Expected	ן ב, המצוטות, מוצוטות, בצוצבוובנוכא, צומאווות.				
to Know					
	Phenomena				
Context/	Some example	phenomena for MS-LS3-1:			
Phenomena	• Use of antibiotics in farming has leeched antibiotics into the water system. However,				
	resistant bacteria persist in groundwater and are difficult to kill.				

	 Wild almond trees produce the poisonous chemical amygdalin. Occasional individual almond trees have a mutation that cause them not to produce amygdalin. These individual plants are cultivated on almond farms. A farmer observed one corn plant producing corn cobs with larger kernels. The farmer planted seeds from that plant and the offspring corn plants also had larger kernels. Thale cress plants sprout in the spring and flower about a month later.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Select or identify from a collection of potential model components, including distractors, the components
	needed to model a phenomenon. Components might match a phenotypic change resulting from a mutation to
	various environments, to determine whether a mutation is beneficial, harmful, or neutral to the individual.
2.	Assemble or complete, from a collection of potential model components, an illustration that is capable of
	representing the effects of a mutation in an individual in a specific environment. This does not include labeling
	an existing diagram.
3.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events
	that act to result in a phenomenon.
4.	Make predictions about the effects of changes in an organism's ability to survive and reproduce based on the
	mutation and/or environment. Predictions can be made by manipulating model components, completing
	illustrations, or selecting from lists with distractors.
5.	Given models or diagrams of phenotypic changes due to mutation, identify and describe why the mutation
	may positively, negatively, or neutrally affect the individual in different environments.
6.	Identify or select the relationships among components of a model that describe the rationale behind the
	beneficial, harmful, or neutral nature of a mutation in specific environments.

Performance	MS-LS3-2			
Expectation	Develop and use a model to describe why asexual reproduction results in offspring with identical			
	genetic information and sexual reproduction results in offspring with genetic variation.			
Dimensions	Developing and	LS1.B: Growth and Development of Organisms	Cause and Effect	
	Using Models • Develop and use a model to describe phenomena.	 Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring <i>(secondary)</i>. LS3.A: Inheritance of Traits Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes (at random) half of the genes acquired by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ 	• Cause and effect relationships may be used to predict phenomena in natural systems.	
		from each other.		
Clarifications	Clarification Stater	nents		
and Content	Emphasis is	s on using models such as Punnett Squares, diagrams and simu	lations to describe	
Limits	the cause and effect relationship of gene transmission from parent(s) to offspring and			
	resulting genetic variation.			
	 Content Limits Assessment does not include phases of mitosis or meiosis. Students do not need to know: process of recombination 			
Science	Development, gern	nination, plant structure, plumage, reproductive system, fertiliz	zer, allele,	
Students are		essive trait, hereultary information, Furnett square, transmiss	ion, protein, DNA	
Expected to				
Know				
Science	DNA replication, se	x-linked trait, recombination, gene expression, segment, sex co	ell, sex	
Vocabulary	chromosome, cell c	division, mutation, meiosis, amino acid, amino acid sequence, h	naploid, diploid	
Students are				
Not Expected				
LO KHOW		Dhanomana		
Context/	Some example phe	nomena for MS-I S3-2:		
Phenomena	Jellyfish wil	Il produce both clones and genetically diverse offspring during	different stages of	
	their life cycle.			
	Strawberry	plants grow another stem from a core stem that extends horiz	zontally on the	
	, ground. Th	is new stem will become a separate strawberry plant.	-	
	A flatworm	is cut in half. Rather than dying, both halves regenerate their	lost portions to	
	form two n	ew, distinct, and fully functioning worms.		

	• A plant (<i>Bryophyllum diagremontianum</i>) native to Madagascar has what appears to be miniature clusters of leaves lining the edges of a much larger leaf.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Select or identify from a collection of potential model components, including distractors, the components needed to model the phenomenon. Components might include alleles, genotypes, and phenotypes.
2.	Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing different types of reproduction. This <i>does not</i> include labeling an existing diagram.
3.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in a phenomenon.
4.	Make predictions about the effects of genetic variation from reproduction. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.
5.	Given models or diagrams of types of reproduction, identify the types of reproduction and how they change in each scenario OR identify the properties of the different types of reproduction that cause genetic variation.
6.	Identify missing components, relationships, or other limitations of the model.
7.	Identify, calculate, or select the relationships among the components of a model that describe the types of reproduction, the environmental conditions under which reproduction occurs, or explain the genetic variation that results from reproduction.

Performance	MS-LS4-1			
Expectation	Analyze and interpret data for patterns in the fossil record that document the existence, diversity,			
	extinction, and change of life forms throughout the history of life on Earth, under the assumption that			
	natural laws operate today as in the past.			
Dimensions	Analyzing and LS4.A: Evidence of Common Ancestry and Patterns			
	Interpreting Data	Diversity	 Graphs, charts, and 	
	 Analyze and interpret 	• The collection of fossils and their placement in	images can be used to	
	data to determine	chronological order (e.g., through the location	identify patterns in	
	similarities and	of the sedimentary layers in which they are	data.	
	differences in findings.	found or through radioactive dating) is known		
		as the fossil record. It documents the		
		existence, diversity, extinction, and change of		
		many life forms throughout the history of life		
		on Earth.		
Clarifications	Clarification Statement			
and Content	Emphasis is on fir	ding patterns of changes in the level of complexity	y of anatomical structures	
Limits	in organisms and	the chronological order of fossil appearance in the	rock layers.	
	Contout Linsite			
	Content Limits	constinue and wish comparisons of fassile to extent	organisms, ambruological	
	 Does not include: avidance, ganatic 	genetic analysis, comparisons of lossils to extant	organishis, empryological	
	evidence, genetic	variation, inneritance, selective pressures.	a or intervals of goological	
	<u>Students do not need to know</u> : the names of individual species/genera or intervals of geological time, taxonomy, processes of fossil formation.			
	time, taxonomy, processes of fossil formation.			
Science	Sedimentary rock, volcanic rock, radioactive dating, mineral, extinct, unicellular, multicellular.			
Vocabulary	organelles, nucleus, ancestor, ancestry, species, evolve, anatomical.			
Students are				
Expected to				
Know				
Science	Cladogram, phylogenetics	, phylogenetic systematics, phylum/phyla, class, or	der, family,	
Vocabulary	genus/genera, homologou	us, analogous, divergent, convergent, prokaryote, e	ukaryote.	
Students are				
Not				
Expected to				
Know				
		Phenomena		
Context/	For this performance expectation the phenomena are sets of data. These are the observed facts that			
Phenomena	the kids will look at to discover patterns. Below, we enumerate some of the patterns that might			
	comprise the data sets (phenomena) to be analyzed.			
	Stimuli might commonly include one or more geological column, data an what facelle are found in that			
	stimuli might commonly include one or more geological column, data on what fossils are found in that			
	in the analysis, sufficient data are given to anchor the ages of one or more hey strate. Students would			
	set out to identify and articulate natterns in the data			
	set out to identify and articulate patterns in the data.			
	Patterns that describe the	data sets for MS-LS4-1:		
	 The first feather-like structures, associated with dinosaurs, appear in the fossil record close to 200 million years ago. Over the next 50 million years, a great variety of dinosaurs and true 			
	birds appeared, showing a great variety of feathers.			

	 In North America, in the late C, a diverse assemblage of fossils is found. In the early Tertiary, there are far fewer types of fossils. Prior to 542 million years ago, the fossil record shows relatively simple organisms without much variation. Layers in the fossil record between 542 million years ago to 476 million years ago shows the Cambrian Explosion—a time of significant evolution of animals, beginning with trilobites and ending with vertebrate fish. The Cambrian Explosion closed with a major extinction. 525-year-old rock layers contain the earliest vertebrate fossils, which are of fish. These fossil fish had a cartilage skull with no jaw, and lacked a vertebral column. Fossils in 450-million-
	year-old rocks include vertebrate fish with a cartilage jaw and vertebral column. 400-year-old
	rocks include fish with skulls that include jaws and vertebrates made of bone.
This Perfo	ormance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Organize fossil ree	e and/or arrange (e.g., using illustrations and/or labels) data that document patterns of change in the cord related to changes in anatomical structures or organism appearance/disappearance.
2. Generat	e/construct graphs, tables, or assemblages of illustrations and/or labels of data that document
appeara	nce/disappearance. This may include sorting out distractors.
3. Determi emerger complex	ne or describe evidence that supports data on the timing of a mass extinction event, nce/extinction of a new species/trait, and/or patterns of changes in biodiversity and organism ity over time.
4. Identify, the dive characte	describe/illustrate/assemble sequences over time describing changes in characteristics of organisms, rsity of the characteristics, the diversity of organisms, or the relative frequencies of the eristics. This may include selecting a pattern from a list.

Performance	MS-LS4-2			
Expectation	Apply scientific ideas to construct an explanation for the anatomical similarities and differences			
	among modern organisms and between modern and fossil organisms to infer evolutionary			
	relationships.			
Dimensions	Constructing	LS4.A: Evidence of Common Ancestry and	Patterns	
	Explanations and	Diversity	 Patterns can be used 	
	Designing Solutions	• Anatomical similarities and differences among	to identify cause and	
	 Apply scientific ideas 	organisms living today, and between	effect relationships.	
	to construct an	contemporary organisms and those in the		
	explanation for real-	fossil record, enable the reconstruction of		
	world phenomena,	evolutionary history and the inference of lines		
	examples, or events.	of evolutionary descent.		
Clarifications	Clarification Statements			
and Content	Emphasis is on e	y number of the relationships among organisms i	n terms of similarity or	
Limits	differences of th	he gross appearance of anatomical structures.	in terms of similarity of	
	 Emphasis is on u 	using anatomical similarities and differences to infe	r relationships among	
	different moder	n organisms.		
	 Emphasis is on ι 	inderstanding that the changes over time in the an	atomical features seen in	
	fossil records ca	n be used to infer relationships between extinct or	ganisms to living	
	organisms.			
	 Emphasis is on ι 	inderstanding that organisms that share a pattern	of anatomical features	
	are likely to be more closely related than are organisms that do not share a pattern of			
	anatomical features.			
	Content Limits			
	Students do not need to know: name of specific fossil species: knowledge of specific fossils			
	or anatomical features; genetic variation, process of fossil formation, knowledge of geologic			
	time periods; knowledge of rock layer; relationship between fossils and age of rock layers;			
	molecular homology (similarities in DNA, RNA, and protein sequence).			
			,	
Science	Homologous, analogous	, diversity, extinction, radioactive dating, mineral,	extinct, unicellular,	
Vocabulary	multicellular, organelles, ancestry, species, evolve			
Students are				
Expected to				
Know			C :1 /	
Science	Cladogram, phylogenetic	c tree, dichotomous tree, phylum/phyla, class, ord	er, family, genus/genera,	
Students are	divergent, convergent, prokaryote, eukaryote, types of rock (sedimentary, volcanic rock, igneous,			
Not Expected	metamorphic), embryology.			
to Know				
	Phenomena			
Context/	Some example phenome	ena for MS-LS4-2:		
Phenomena	 Bats and frogs h 	ave forelimbs that look very different, but have sin	nilar bones and overall	
	structure.			
	• Comparing the skull bones of the modern-day whale to the fossilized skulls of Dorudon and			
	Pakicetus, show	s a pattern in the position of the nostril as these or	ganisms changed over	
	millions of years).		

	 Wings are structures that allow most birds to fly, except penguins, which have wings but cannot fly. Modern-day whales live in the ocean but have small hind-legs.
-	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.
2.	Express or complete a causal chain explaining how homologous structures show common ancestry and analogous structures show common function. This may include indicating directions of causality in an incomplete model, such as a flow chart or diagram, or completing cause and effect chains.*
3.	Identify evidence supporting the inference of causation that is expressed in a causal chain.
4.	Describe, identify, and/or select information needed to support an explanation.

Performance	MS-LS4-3					
Expectation	Analyze displays of pictorial data to compare patterns of similarities in embryological					
	development across multiple species to identify relationships not evident in the fully formed					
	anatomy.					
Dimensions	Analyzing and	LS4.A: Evidence of Common Ancestry and	Patterns			
	Interpreting Data	Diversity	 Graphs, charts, and 			
	 Analyze displays of 	 Comparison of the embryological 	images can be used to			
	data to identify	development of different species also	identify patterns in data.			
	linear and nonlinear	reveals similarities that show				
	relationships.	relationships not evident in the fully				
		formed anatomy.				
Clarifications	Clarification Statement	S				
and Content	Emphasis is on	inferring general patterns of relatedness amo	ng embryos of different			
Limits	organisms by c	omparing the macroscopic of diagrams or pict	ures.			
	Contont Limits					
	Assossment of	comparisons is limited to observable (with th	a naked eve) annearances of			
	 Assessment of anatomical stru 	intures in embryological development	e nakeu eyej appearances of			
Science	Species, mammal, repr	oduce. mitosis. meiosis. body structure. limb.	fetus, organ, tissues, cells.			
Vocabulary			, , , ,			
, Students are						
Expected to						
Know						
Science	Placenta, homologous structures, external/internal fertilization, zygote, differentiation, gamete,					
Vocabulary	blastula, mesoderm, endoderm, ectoderm, notochord.					
Students are						
Not Expected						
to Know						
		Phenomena				
Context/	For this performance ex	expectation, the data will consist of pictures, di	agrams, etc. Students will be			
Phenomena	challenged to find patte	erns and similarities.				
	Some example phonom	opp for MS-LS4-2.				
	• Farly mammal	embryos and early fish embryos both contain	gill slits. In fish embryos			
	these gill slits d	evelop into gills. In human embryos, the gill sl	its disannear before hirth			
	 The embryos of 	f chickens, humans, and koalas have tails, and	muscles to move the tails			
	However, as th	e embryos develop, the tails disappear.				
	 The limb buds of 	of early bird embryos are very similar to the lin	mb buds of early human			
	embryos. The li	mb buds of the bird embryos become wings.	while the limb buds of			
	human embrvo	s become arms.				
	The early embr	yos of fish, birds, rabbits, and humans all have	e two-chambered hearts.			
	, ,	,				
This Perfor	mance Expectation and a	associated Evidence Statements support the fo	ollowing Task Demands.			
	Task Demands					
1. Summar	ize data to highlight tren	ds, patterns, or correlations in the similarities	or differences of the			
embryor	nic development of differ	ent species.	embryonic development of different species.			

2	2.	Use relationships identified in the patterns of embryology data to predict the relatedness of different species.
3	3.	Construct a statement that can potentially explain the observed trends or relationships in embryology data.
4	1.	Identify patterns or evidence in the data that support inferences about the development of different species.
5	5.	Identify additional information needed to support or challenge inferences based on identified patterns.

Performance	MS-LS4-4				
Expectation	Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific				
	environment.				
Dimensions	 Constructing Explanations and Designing Solutions Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena. 	 LS4.B: Natural Selection Natural selection leads to the predominance of certain traits in a population, and the suppression of others. 	 Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. 		
Clarifications	Clarification Statements				
and Content Limits	 Emphasis is on using simple probability statements and proportional reasoning to construct explanations. Emphasize the use of proportional reasoning to support explanations of trends in changes to populations over time. Examples could include camouflage, variation of body shape, speed and agility, or drought tolerance. 				
	 Content Limits <u>Students do not need to know</u>: dominant/recessive traits, modes of inheritance (polygenic, sex-linked, etc.). 				
Science Vocabulary Students are Expected to Know	Diversity, trend, predation, abundance, evolve/evolution, allele, sexual reproduction, beneficial, probability, distribution, adaptation, adaptive characteristics, frequency, DNA, dominant traits, recessive traits,				
Science Vocabulary Students are Not Expected to Know	Gene expression, polygenic traits, sex-linked traits, mutation, advantageous, cline, microevolution, gene pool, genetic drift, founder effect, bottleneck effect, gene flow, relative fitness.				
		Phenomena			
Context/	Some example phenomena for MS-	LS4-4:			
Phenomena	 The orchid mantis attracts pollinators of the orchid as prey. In New Mexico, the rock pocket mice found in dark, rocky areas of the Valley of Fire all have dark fur. Male frigate birds with larger red pouches are more likely to find a mate. Some <i>Staphylococus aureus</i> bacteria are able to survive following treatment with the antibiotic methicillin. 				
This Perfo	This Performance Expectation and associated Evidence Statements support the following Task Demands.				
4	Ti	ask Demands			
1. Describe relevant	or select the relationships, interaction from irrelevant information or featu	ons, or processes to be explained and the explained of th	ned. This may entail sorting		
2. Complet This may	 Complete a causal chain explaining how genetic variation affects the probability of survival and reproduction. This may include indicating directions of causality in a flow chart, diagram, or cause and effect chain. 				

- 3. Identify evidence supporting the role of genetic variation in determining the probability of survival and reproduction of an organism.
 - 4. Predict changes in the frequency of a trait, given a change in the environment.
- 5. Identify the information needed to support an explanation for how genetic variation affects the rate of survival and reproduction.

Performance	MS-LS4-5				
Expectation	Gather and synthesize information about technologies that have changed the way humans influence				
	the inheritance of desired traits in organisms.				
Dimensions	Obtaining, Evaluating, and	LS4.B: Natural Selection	Cause and Effect		
	Communicating	 In artificial selection, humans 	 Phenomena may 		
	 Gather, read, and synthesize 	have the capacity to influence	have more than		
	information from multiple appropriate	certain characteristics of	one cause, and		
	sources and assess the credibility,	organisms by selective	some cause and		
	accuracy, and possible bias of each	breeding. One can choose	effect relationships		
	publication and method used, and	desired parental traits	in systems can only		
	describe how they are supported or	determined by genes, which are	be described using		
	not supported by evidence.	then passed on to orispring.	probability.		
Clarifications	Clarification Statements				
and Content	 Emphasis is on synthesizing inform 	nation from reliable sources about t	he influence of		
Limits	humans on genetic outcomes in a	rtificial selection (such as genetic mo	odification, animal		
	husbandry, and gene therapy) and	d on the impacts these technologies	have on society as		
	well as the technologies leading to	o these scientific discoveries.			
	Content Limits				
	• Students do not need to know: ov	verlapping DNA sequences, Hardy-W	einberg calculations,		
	biodiversity, mechanisms of gene	transfer, dominant/recessive genes			
Science	Natural selection, artificial selection, evolution, adaptation, resources, reproduction, offspring,				
Vocabulary	breeding, genetic engineering, DNA, cloning, inherit, hereditary, proteins.				
Students are					
Expected to					
Science	Chromosomes, genetic variation, genetic	combination, meiosis, mitosis, replic	ations. mutations.		
Vocabulary	gene regulation, allele, RNA sequences, amino acid sequences.				
, Students are					
Not Expected					
to Know					
	Pheno	omena			
Context/	Some example phenomena for MS-LS4-5:				
Phenomena	There is no wild plant that looks li	ke modern corn (soft starchy kernel	s lined up in a row).		
	Farmers isolated wild cabbage pla	ants to create a variety of vegetables	, including broccoli		
	and kale. The wild cabbage plants	s were selected for their different fla	vors, textures, leaves,		
	and flowers.				
	 Scientists are currently working to breed sheep that do not burp in order to reduce methane amircian 				
	 Scientists want to breed strong ar 	nd more resistant bees that won't be	e damaged by disease		
	and other parasites.				
This Perfo	ormance Expectation and associated Eviden	ce Statements support the following	g Task Demands.		
	lask Demands				
1. Generate or construct tables or assemblages of data that document the similarities and differences between					
traditional and modern gene selection.					

- 2. Organize and/or arrange data of the success rates of different methods to highlight trends or patterns in genetic modification.
- 3. Use relationships identified in the data to predict the best gene selection method to use in a given situation.
- 4. Identify, among distractors, the potential real-world uses of this data.

Performance	MS-LS4-6		
Expectation	Use mathematical representations to support explanations of how natural selection may lead to		
	increases and decreases of specific traits in populations over time.		
Dimensions	Using Mathematics and	LS4.C: Adaptation	Cause and Effect
	 Computational Thinking Use mathematical representations to support scientific conclusions and design solutions. 	• Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a	 Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
		population changes.	
	Clarification Statement		
clarifications		and mathematical module archability stat	omonto and properticual
	Emphasis is on us	sing mathematical models, probability stat	ements, and proportional
Linits		re explanations of trends in changes to populat	lions over time.
	Content Limits		
	Math can include r	measures of central tendency, basic operation	ons that can be calculated
	without a calculato	r, and basic graphical analysis (bar chart, pie	chart, scatter plot, box and
	whisker plot, line ch	nart).	•
	Students aren't exp	ected to know the mechanisms of genetic inhe	eritance or mutation.
	Assessment does not	ot include Hardy-Weinberg calculations.	
	Assessment does no	ot include other mechanisms of evolution (gene	etic drift, co-evolution, gene
	flow, etc.)		
	<u>Students do not ne</u>	eed to know: Alleles, DNA sequences, anaton	nical structures, embryonic
	development, gene	frequency, morphology, speciation.	
Colonno	Climata avalution inharit (annoration species gopus reproduction distr	ibution ratio
Vocabulary	Climate, evolution, innent, §	generation, species, genus, reproduction, distr	
Students are			
Expected to			
Know			
Science	Morphology, genetic varian	ce, proliferation, biotic/abiotic.	
Vocabulary			
Students are			
Not Expected			
to Know			
	1	Phenomena	
Context/	Some example phenomena	for MS-LS4-6:	
Phenomena	Some bacteria are k	killed by a certain antibiotic while other bacteri	a are immune to it. After
	the antibiotic is use	d once, bacteria die. The next time the antibio	tic is used, there are many
	bacteria left.		
	Ihe Sandhills in Net this area last data.	braska used to be covered in dark-colored soil.	Most deer mice living in
	this area had dark-c	colored fur coats, while others had light-colore	a fur coats. Over time, the
	bad mostly light and	area in light-colored sand. After many years, th	e population of deer mice
1	nau mostiy light-col	ioreu fur coats. This will be presented as data.	

	 In the Galapagos Islands, there are finches with thin, small beaks that eat small, soft seeds. There also finches with thick, large beaks that eat larger hard and dry seeds. A drought period in 1977 affected the plant life on the islands, greatly reducing the number of small, soft seeds. The next year, there were far more large-beaked birds than small-beaked birds.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Make simple calculations using given data to calculate or estimate changes in the prevalence of specific traits over time.
2.	Illustrate, graph, or calculate the prevalence of specific traits passed on in observed populations under varying conditions, from given data. The data may be ordinal and the calculations may be representations of trends or propensities.
3.	Calculate or estimate properties or relationships of the changes in the distribution of traits among a population under varying conditions, based on data from one or more sources.
4.	Compile, from given information, the data needed for a particular inference about the relationship between changes in the environment and changes in the traits of a population.
5.	Use mathematical representations and/or computational representations (such as trends, averages, histograms, graphs, spreadsheets) to identify relationships in the data.
6.	Use mathematical representations and/or computational representations (such as trends, averages, histograms, graphs, spreadsheets) to explain the influence that natural selection has had on the presence of specific traits in a population over time.

Performance	MS-ESS1-1		
Expectation	Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar		
	phases, eclipses of the	sun and moon, and the seasons.	
Dimensions	Developing and	ESS1.A The Universe and Its Stars	Patterns
	Using Models	• Patterns of the apparent motion of the sun, the	Patterns can be used
	 Develop and use a 	moon, and stars in the sky can be observed,	to identify cause and
	model to describe	described, predicted, and explained with models.	effect relationships.
	phenomena.		
		ESS1.B Earth and the Solar System	
		 This model of the solar system can explain 	
		eclipses of the sun and the moon. Earth's spin	
		axis is fixed in direction over the short term but	
		tilted relative to its orbit around the sun. The	
		seasons are a result of that tilt and are caused by	
		the differential intensity of sunlight on different	
		areas of Earth across the year.	
Clarifications	Clarification Statemen	ts	
and Content	 Examples of m 	odels can be physical, graphical, or conceptual.	
Limits			
	Content Limits		
	<u>Students do no</u>	<u>ot need to know</u> Earth's exact tilt; sidereal and synodic	periods; umbra and
	penumbra (the	e term "shadow" should be used); times of moonrise a	nd moonset;
	precession; exa	act dates of equinoxes and solstices (but knowledge of	f the months in which
	they occur is re	easonable to assess).	
Seienee	Chadayy arbit avia ala	not cotallita full maan now maan half maan	
Vecabulary	Shadow, orbit, axis, pie	anet, satellite, full moon, new moon, nall moon	
Students are			
Expected to			
Know			
Science	Perigee, apogee, sidere	eal period, sidereal month, synodic period, synodic mo	onth. umbra. penumbra.
Vocabulary	precession, equinox, so	olstice, ecliptic, waxing, waning, gibbous, first quarter	moon, last quarter
Students are	moon		
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenon	nena for MS-ESS1-1:	
Phenomena	When observe	d from Earth over the course of a month, the appeara	nce of the moon
	changes.		
	A full moon oc	curs in every calendar month. However, an eclipse of t	the moon does not
	occur in every	calendar month.	
	A new moon o	ccurs in every calendar month. However, a total eclips	se of the sun is a rare
	event.		
	In the northern	n hemisphere, July is a summer month. In the southerr	n hemisphere, July is a
	winter month.		
This Perfo	ormance Expectation and	d associated Evidence Statements support the followir	ng Task Demands.
		Task Demands	

7.	Select or identify from a collection of potential model components, including distractors, components needed
	for a model that can explain lunar phases, eclipses of the sun, eclipses of the moon, or seasons on Earth.
	Components might include the sun, moon, Earth, solar energy, the moon's orbital trace, Earth's orbital trace,
	the angle of the moon's orbital trace, the angle of Earth's orbital trace, Earth's axis, or the tilt of Earth's axis.
8.	Assemble or complete, from a collection of potential model components, an illustration or flow chart that is
	capable of representing the causes of lunar phases, eclipses of the sun, eclipses of the moon, or seasons on
	Earth. This <u>does not</u> include labeling a simple diagram of the Earth-sun-moon system.
9.	Describe, select, or identify the relationships among components of a model that can explain lunar phases,
	eclipses of the sun, eclipses of the moon, or seasons on Earth. Components might include the sun, moon,
	Earth, solar energy, the moon's orbital trace, Earth's orbital trace, the angle of the moon's orbital trace, the
	angle of Earth's orbital trace, Earth's axis, or the tilt of Earth's axis.
10.	Manipulate the components of a model to demonstrate how the relationships among the sun, the moon,
	Earth, and solar energy change to result in lunar phases, eclipses of the sun, eclipses of the moon, or seasons
	on Earth. *
11.	Make predictions about the effects of changes in the relationships among the sun, the moon, Earth, and solar
	energy as they relate to lunar phases, eclipses of the sun, eclipses of the moon, <i>or</i> seasons on Earth.
	Predictions can be made by manipulating model components, completing illustrations, or selecting from lists
	with distractors. *
12.	Identify missing components, relationships, or other limitations of a model that can explain lunar phases,
	eclipses of the sun, eclipses of the moon, <i>or</i> seasons on Earth.
	• • • • •

Performance	MS-ESS1-2		
Expectation	Develop and use a model to describe the role of gravity in the motions within galaxies and the solar		
	system.		1
Dimensions	Developing and	ESS1.A: The Universe and Its Stars	Systems and System
	Using Models	• Earth and its solar system are part of the Milky	Models
	 Develop and use a 	Way galaxy, which is one of many galaxies in the	 Models can be used
	model to describe	universe.	to represent systems
	phenomena.		and the interactions
		ESS1.B: Earth and the Solar System	in a system.
		• The solar system consists of the sun and a	
		collection of objects, including planets, their	
		moons, and asteroids that are held in orbit	
		around the sun by its gravitational pull on them.	
		• The solar system appears to have formed from a	
		disk of dust and gas, drawn together by gravity.	
Clarifications	Clarification Statemer	nts	
and Content	 Emphasis for t 	the model is on gravity as the force that holds togethe	er the solar system and
Limits	Milky Way gal	axy, and controls orbital motions within them.	· · · · · · · · · · · · · · · · · · ·
	 Examples of m 	nodels can be physical (such as the analogy of distance	e along a football field or
	computer visu	alizations of elliptical orbits) or conceptual (such as m	nathematical
	proportions re	elative to the size of familiar objects such as students'	school or state).
	Focus should I	be on qualitative comparisons, not quantitative.	
	Content Limits		
	Assessment de	oes not include Kepler's Laws of orbital motion or the	apparent retrograde
	motion of the	planets as viewed from Earth.	
	Assessment de	oes not include specific facts about any planets or mo	ons.
Science	Inertia, force, mass, w	eight, orbit, names of planets	
Vocabulary			
Students are			
Expected to			
Know			
Science	Names of specific mod	ons, names of space shuttles, moment of inertia, Keple	er's laws of planetary
Vocabulary	motion, black hole		
Students are			
Not Expected			
to know		Phonomona	
Context/	Some example phenor	mena for MS-ESS1-2:	
Phenomena	Satellites orbit	t Earth but can fall out of orbit (Skylab, UART satellite)).
	Halley's Come	t can be seen as it travels past Earth every 75–76 year	rs.
	Rings are pres	ent around some planets.	
	Mars has two	moons, Phobos and Deimos, which orbit the planet.	
		· · · · · · · · · · · · · · · · · · ·	
This Perfo	ormance Expectation an	d associated Evidence Statements support the followi	ng Task Demands.
		Task Demands	

1.	Select or identify from a collection of potential model components, including distractors, the components needed for a model that describes the role of gravity in celestial bodies.
2.	Assemble or complete, from a collection of potential model components, an illustration, diagram or description that is capable of representing forces and their influences on the motion of celestial bodies and/or man-made objects in orbit. This <u>does not</u> include labeling an existing diagram.
3.	Describe, select or identify the relationships among components of a model that can explain the role of gravity in the motions of galaxies and the solar system. Components might include the sun, the moon, Earth, Milky Way galaxy, other planets and their moons.
4.	Manipulate the components of a model to demonstrate how the relationships among the sun, the Earth, the moon, planets in the solar system, and galaxies change the resulting gravitational force between/or motions of those bodies.*
5.	Make predictions about the effects of changes in mass/distance/how fast an object travels in a given model on other objects in the system. Predictions can be based on manipulating model components, completing illustrations, or selecting from a list including distractors.
6.	Identify missing components, relationships, or other limitations of a model that can explain the role of gravity.

Performance	MS ESS1-3		
Expectation	Analyze and interpret data to determine scale properties of objects in the solar system.		
Dimensions	Analyzing and	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity
	Interpreting Data	 The solar system consists of the 	 Time, space, and energy
	 Analyze and interpret 	sun and a collection of objects,	phenomena can be observed at
	data to determine	including planets, their moons,	various scales using models to
	similarities and	and asteroids that are held in	study systems that are too large
	differences in findings.	orbit around the sun by its	or too small.
		gravitational pull on them.	
Clarifications	Clarification Statements		
and Content	Emphasis is on the	e analysis of data from Earth-based insi	truments, space-based telescopes
Limits	and spacecraft to	determine similarities and differences	among solar system objects.
	Examples of scale	properties include the sizes of an obje	ct's layers (such as crust and
	atmosphere), surf	ace features (such as volcanoes), and c	orbital radius.
	 Examples of data i 	nclude statistical information, drawing	s and photographs, and models.
	Contont Limits		
	• Assessment does	act include recalling facts about prope	rties of the planets and other solar
	system hodies	for include recaining facts about prope	ties of the planets and other solar
	 Students do not no 	eed to know. Facts about properties of	the planets and other solar system
	bodies, scientific r	iotation.	
Science	Satellite, terrestrial planet	, gas giant, planetary rings, dwarf plan	et, sun, inner planet, outer planet,
Vocabulary	comet,		
Students are			
Expected to			
Know			
Science	Density, ecliptic, solar win	d, interstellar medium, main sequence	, synchronous rotation, protostar,
Vocabulary	protoplanetary disc, accretion.		
Students are			
Not Expected			
to Know			
Cantout	The phone property for this p	Phenomena	data Camalas of abaramana abauld
Context/	describe the data set(s) to	be given in terms of nattorns or relation	data. Samples of phenomena should
Flienomena	the columns and rows of a	by pothetical table presenting the dat	a even if the presentation is not
	tabular. The description of	the phenomenon should describe the	a, even if the presentation is not
	(e.g. mans tables granks	etc)	presentation format of the data
		, ctcj.	
	Some example phenomen	a for MS-ESS1-3:	
	 Four of Jupiter's m 	noons can be clearly seen through a sm	all telescope under low
	magnification. The	ese moons appear as tiny dots arrange	d around Jupiter.
	Close-up pictures	from the New Horizons mission provid	ed new evidence about the dwarf
	planet, Pluto, which	h was not able to be gathered by dista	ant observations and calculations
	(surface features,	scale).	
	• The sun and the m	oon appear as approximately the sam	e size in the sky, but the sun is
	vastly larger than	the moon (scale).	

		 Even though the moon is infinitesimally smaller than the sun, the entire sun is blocked from view on Earth during a solar eclipse (scale).
	This Perfo	rmance Expectation and associated Evidence Statements support the following Task Demands.
		Task Demands
1.	Make sir location	nple calculations using given data to estimate the properties (e.g., mass, surface temp., diameter) and s of different solar system objects relative to a given reference point/object.
2.	Illustrate relations	e, graph, or identify relevant features or data that can be used to estimate properties of objects or hips in our solar system.
3.	Calculat on data	e, estimate or identify properties of objects or relationships among objects in the solar system, based from one or more sources.*
4.	Compile an objec	, from given information, the data needed for a particular inference about scale or other properties of t.
5.	Given a in the m	partial model of objects in the solar system, identify objects or relationships that can be represented odel or the reasons why they cannot be represented in the model.

Performance	MS-ESS1-4		
Expectation	Construct a scientific explanation based on evidence from rock strata for how the geologic timescale		
	is used to organize Earth's 4.6-billion-year-old history.		
Dimensions	Constructing Explanations and	ESS1.C: The History of Planet	Scale, Proportion and
	Designing Solutions	Earth	Quantity
	• Construct a scientific explanation based	• The geological time scale	• Time, space, and
	on valid and reliable evidence obtained	interpreted from rock strata	energy phenomena
	from sources (including students' own	provides a way to organize	can be observed at
	theories and laws that describe the	Earth's history. Analyses of	warrous scales, using
	natural world operate today as they did	record provide only relative	systems that are too
	in the past and will continue to do so in	dates not an absolute	large or too small
	the future.	scale.	
Clarifications	Clarification Statements		
and Content	• Emphasis is on how analyses of roo	ck formations and the fossils the	y contain are used to
Limits	establish relative ages of major even	ents in Earth's history.	-
	Example of Earth's major events co	ould range from being geological	ly recent (e.g., the most
	recent glacial period or the earlies	t fossils of Homo sapiens) to geo	logically very old (e.g., the
	formation of Earth or the earliest e	evidence of life).	
	Examples can include the formation	on of mountain chains and ocean	basins, the evolution or
	extinction of particular living organ	nisms, or significant instances of	volcanic eruptions.
	Contont Limits		
	Assessment does not include recal	ling the names of specific period	s and enochs or events
	within them.	ing the names of specific period	
Science	Erosion, weathering, ancient, prehistoric, I	ayer, formation, mineral, sedime	entary, sediment,
Vocabulary	metamorphic, volcanic, superposition, cros	ss-cutting, fault, fold, geology, ge	eological
Students are			
Expected to			
Know			
Science	Radioactive dating, bio-geology, geobiolog	y, relative dating, numerical dati	ng, absolute dating,
Vocabulary	carbon dating, radiometric dating, igneous	s, stratigraphy, biostratigraphy, c	nronostratigrapny,
Not Expected	sequence stratigraphy, bed, lamina, paleo	environment, paleoecology, pale	omagnetic
to Know			
	Phenor	mena	
Context/	Some example phenomena for MS-ESS1-4	:	
Phenomena	• A very distinct clay layer tops the H	Hell Creek Formation in Montana	. Below this layer, the
	Hell Creek is rich in dinosaur fossils	s; above the layer, no dinosaurs	are found.
	• The landscape of Cape Cod, Massa	chusetts, is almost entirely smal	I hills of sand and gravel.
	However, a hole drilled 500 feet in	to the ground will hit hard meta	morphic rock.
	In Box Canyon in Ouray, Colorado,	metamorphic rocks that are star	nding vertical are capped
	by sedimentary rocks that are lying	g flat.	
	The St. Peter Sandstone is a very w	vhite sandstone rock layer expos	ed in many places in the
	midwestern United States. The St.	Peter is very uniform in appeara	nce but the rock layer sits
	on top of different kinds of rocks in	n the North than it does in Misso	ouri.

	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Organize and/or arrange (e.g., using illustrations and/or labels, including taken from or added to, stratigraphic columns and/or geologic maps), or summarize, data/information so as to highlight trends, patterns, or correlations in paleoenvironmental changes, geological events/processes, and/or the appearance or disappearance in the record of specific organisms.*
2.	Generate/construct graphs, tables, or assemblages of illustrations, and/or labels of data/information that document patterns, trends, or correlations in how rock types and included fossils change over geologic time, recording different events and paleo environments. This may include sorting out distractors.*
3.	Use relationships identified in the data/information to hypothesize the relative age of specific rock layers, formations, or fossils, in a stratigraphic column or on a geologic map.*
4.	Identify patterns or evidence in the data/information that support inferences about what the paleoenvironment was like during time intervals represented in a stratigraphic column or on a geologic map.
5.	Describe, identify, and/or select information needed to support an explanation.

*denotes those task demands which are deemed appropriate for use in stand-alone item development. 2/3 of these TDs should be combined and used when developing a stand-alone item.

Performance	MS-ESS2-1		
Expectation	Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this		
	process.		
Dimensions	Developing and	ESS2.A: Earth's Materials and Systems	Stability and Change
	• Develop and	 All Earth processes are the result of energy flowing and matter cycling within and among 	• Explanations of stability and change in natural or designed
	use a model to	the planet's systems. This energy is derived	systems can be contructed by
	describe the	from the sun and Earth's hot interior. The	examining the changes over
	phenomena.	energy that flows and matter that cycles	time and processes at
		produce chemical and physical changes in	different scales, including the
		Earth S materials and living organisms.	
Clarifications	Clarification State	ments	
and Content	Emphasis	is on the processes of melting, crystallization, wea	athering, sedimentation, and
Limits	deformati	on, which act together to form minerals and rocks	s through the cycling of Earth's
	matter.		
	Content Limits		
	Assessmen	nt does not include the identification and naming	of minerals.
	<u>Students c</u>	<u>lo not need to know</u> : specific processes of chemic	cal or biogeochemical
	mineral cr	vstallization orders (e.g., Bowen's Reaction Series	s): mineral metamorphism
	orders/ter	nperatures/pressures/stabilities; rock metamorpl	hism zones; specific processes
	that drive	the tectonic engine (e.g., slab pull; ridge push).	
Science	Collide, heat cond	uction transform transport heat transfer heat r	adiation, thermal energy, heat
Vocabulary	convection, precip	itation, volcanic eruption, chemical, weathering,	erosion, sediment, deposition,
Students are	rock cycle, ice wed	lge, fault, fold, igneous rock, metamorphic rock, s	edimentary rock, volcanic rock,
Expected to	plate tectonics, cri	ust, mantle, outer core, inner core.	
Science	Biogeology geobi	plagy geochemistry biogeochemistry rock seque	ence convection current
Vocabulary	mountain building	, geochemical cycle, tectonic uplift, accretionary	wedge, accretionary prism.
Students are	_		
Not Expected			
to Know		Dhanamana	
Context/	Some example ph	Phomena for MS-FSS2-1	
Phenomena	Lava from	an erupting volcano in Hawaii flows across a road	. The molten material is so hot
	that it emi	ts light. Several months later, the material coveri	ng the road is a hard, black rock.
	A mountai	n is capped by metamorphic rock. Many cracks cr	risscross the rock. Rainwater
	often fills	the fractures, freezing when temperatures drop. (Over the years, the fractures
	An exposu	re of bedded sandstone has been cut by a plug of	figneous rock Near the edges of
	the igneou	is rock, the sandstone is discolored and displays a	different texture from the rest
	of the exp	osure.	
	An exposu	re of sedimentary rock contains pieces of a metal	morphic rock that is exposed
	several mi	ies away.	
This Perfo	ormance Expectation	n and associated Evidence Statements support th	e following Task Demands.

	Task Demands
1.	Select or identify from a collection of potential model components, including distractors, the components needed to model the phenomenon. Components might include different rock types, processes that change one rock type into another, surface environments on Earth where these processes occur and where different rock types exist, and layers within Earth where these processes occur. Sources of energy (radiation, convection) that drive the cycling (but <i>not</i> the creation of) matter should also be included as components.
2.	Assemble or complete, from a collection of potential model components, an illustration, virtual representation of a physical model, or flow chart that is capable of representing how energy (radiation, convection) drives processes that cycle (but do <i>not</i> create) matter on Earth. This <i>does not</i> include labeling an existing diagram.
3.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to resultin the cycling of Earth's materials.
4.	Make predictions about the effects of changes in the rock cycle. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.
5.	Given models or diagrams of the rock cycle, identify different rock types and how they change in each scenario OR identify the properties of energy that cause Earth materials to cycle between different rock types.
6.	Identify missing components, relationships, or other limitations of the model that can explain the cycling of Earth's materials.
7.	Identify or select the relationships among components of a model that describe the relationship between energy and the cycling of matter that forms different types of rock, or explain the relationship between energy and the cycling of matter that forms different types of rock.

Performance	MS-ESS2-2		
Expectation	Construct an explanation based on evidence for how geoscience processes have changed Earth's		
	surface at varying time and spatial scales.		
Dimensions	Constructing Explanations	ESS2.A: Earth's Materials and Systems	Scale, Proportion, and
	and Designing Solutions	 The planet's systems interact over scales 	Quantity
	 Construct a scientific 	that rage from microscopic to global in	 Time, space, and
	explanation based on	size, and they operate over fractions of a	energy phenomena
	valid and reliable	second to billions of years. These	can be observed at
	evidence obtained from	interactions have shaped Earth's history	various scales using
	sources (including the	and will determine its future.	models to study
	students' own		systems that are too
	experiments) and the	ESS2.C: The Roles of Water in Earth's	large or too small.
	assumption that theories	Surface Processes	
	and laws that describe	• Water's movements—both on the land	
	hature operate today as	and underground—cause weathering and	
	they did in the past and	erosion, which change the land's surface	
	the future	features and create underground	
	the future.		
Clarifications	Clarification Statements		
and Content	Emphasis is on how	processes change Earth's surface at time and sr	natial scales that can be
Limits	large (such as slow p	plate motions or the uplift of large mountain ran	iges) or small (such as
	rapid landslides or m	nicroscopic geochemical reactions), and how ma	any geoscience processes
	(such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are		
	punctuated by catastrophic events.		
	Examples of geoscience processes include surface weathering and deposition by the		
	movements of water, ice, and wind.		
	Emphasis is on geose	cience processes that shape local geographic fea	atures, where
	appropriate.		
	Content Limits		
	• Students are expected to know all of the components (processes of the rock cycle but not		
	 Students are expected to know all of the components/processes of the rock cycle but not enceific reals or mineral nerves 		
	specific rock or mineral names.		
	Geological Time Scal	le by name, specific volcano types (shield, effusi	inc intervals of the
		e by name, speeme volcano types (smeld, ends	ve, composite, etc.jj
Science	Earthquake, volcanic eruptic	ons, core, crust, mantle, pressure, continent, erc	sion, weathering,
Vocabulary	magma, lava, igneous, sedimentary, metamorphic, mineral, meteor, crater, plate tectonics,		
Students are	continental drift, subduction	zone, divergent boundary, convergent bounda	ry, hot spot, fault,
Expected to	tsunami, hurricane, tornado, fracture, folding, compressing, sea floor spreading, layer, ridge, rock		
Know	cycle, trench, plateau, slope, landslides, floods, caves		
Science	Endogenic system, exogenic system, radiometric dating, original horizontality, superposition,		
Vocabulary	uniformitarianism, primordial, epoch, eon, period, liquification, Mohorovicic discontinuity (Moho),		
Students are	seismic waves, seismograph, Richter scale, fumaroles, mofettes, solfataras, Caledonian era, Variscan		
Not Expected	era, Alpine era, massif, grabe	en, monolith, monadnock, nappe system, isosta	sy, pluton, batholith,
to Know	stratigraphy, lithification, ev	aporite, hydrothermal, relief, topography, conti	nental shield, terrain,
	anticline, syncline, strike-slip fault, horst, orogenesis, tephra, caldera		
Contout/	Phenomena Companya da a la companya		
Context/	Some example phenomena i	IOF INIS-ESSZ-Z:	
Flienomena			

	 A hillside in Oregon experiences an intense rain storm. At the end of the storm, part of the hillside collapses, covering a road with mud and debris. In Northern Arizona, there is a large circular depression. In southeastern Pennsylvania, the landscape is dotted with a number of irregular holes that lead to caves. When viewed from orbit, the Eastern coastline of South America and the Western Coast of Africa look as though they were joined together, similar to a jigsaw puzzle. 		
Thi	s Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1. Ar m	ticulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This ay entail sorting relevant from irrelevant information or features.		
2. Ex lo as	 Express or complete a causal chain explaining how a given process(es) acts to modify Earth's surface in the long term and/or short term. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains. 		
3. lc th	 Identify evidence supporting the inference of causation that is expressed in a causal chain for a process(es) that acts to modify Earth's surface in the long term and/or short term. 		
4. Us at	e an explanation to predict the effect of the process on Earth's surface, given a change in conditions (e.g., mospheric, tectonic, geological, hydrologic).		
5. De Ea	escribe, identify, and/or select information needed to support an explanation for how processes affect rth's surface over the short and/or long term.		

Performance	MS-ESS2-3		
Expectation	Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor		
	structures to provide evidence of past plate motions.		
Dimensions	Analyzing and	ESS1.C: The History of Planet Earth	Patterns
	 Interpreting Data Analyze and interpret data to provide evidence for phenomena. 	 Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. <i>(secondary)</i> ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth's plates have moved great distances, collided, and spread apart. 	 Patterns in rates of change and other numerical relationships can provide information about natural systems.
Clarifications	Clarification Stat	ements	
and Content Limits	 Examples of data include similarities of rock and fossil types on different continents, the shapes of continents (including continental shelves), and the locations of ocean structures (such as ridges fracture zones, and trenches). 		
	Content Limits		
	Paleoma	gnetic anomalies in oceanic and continental crust are not assess	ed.
	• <u>Students</u>	do not need to know: Specific chemical makeup of the crust, m	antle, and core;
	specific r	ocks within major categories (e.g., basalt, amphibolite, granite);	mineral
	crystalliza	ation orders (e.g., Bowen's Reaction Series), mineral melt orders	
Science Vocabulary Students are Expected to	Crust, mantle, core, convection, density, plate tectonics, earthquake, geosphere, element, continental, upwelling, convection, trench, subduction, ridge, volcanic, sedimentary, fault, extension, volcanic rock, sedimentary rock, metamorphic rock, ridge, hotspot.		
Science	Block (as in fault), accretionary wedge, accretionary prism, mantle composition, stress (tectonic)		
Vocabulary	strain (tectonic), normal fault, transform fault, thrust fault, reverse fault, foot wall, hanging wall.		
Students are	felsic, mafic, ultramafic.		
Not Expected			
to Know			
Phenomena			
Context/	Some example pl	nenomena for MS-ESS2-3:	
Phenomena	There are	e volcanoes on all of the Hawaiian islands. But only volcanoes or	the southeastern
	most isla	nd, Hawaii, are active today.	
	Earthquakes are very commonly felt on the islands of Japan.		
	The Atlantic coasts of South America and Africa appear to fit together like two jigsaw puzzle		
	pieces. Identical fossils of certain plants and animals are preserved in rocks found along		
	DOTH COASTS.		
	Earthquakes are very rare in the State of Florida.		
This Perfo	ormance Expectation	on and associated Evidence Statements support the following Ta	ask Demands.
Task Demands			
1. Identify patterns or evidence in the data that supports conclusions about how the Earth's plates have moved			
and interacted with each other (e.g., converged or diverged).*			

2.	Use relationships identified in the data to predict the locations of fossils, earthquakes, or volcanoes.
3.	Illustrate, graph or identify relevant features or data that can be used to identify past plate motions or estimate the rate of change in tectonic processes.
4.	Organize and/or arrange (e.g., using illustrations and/or labels), or summarize data to highlight trends, patterns, or correlations.*

5. Compile from given information, the data needed to identify a pattern in the rate of change or evidence of past plate motions.

Performance	MS-ESS2-4		
Expectation	Develop a model to describe how the cycling of water through Earth's systems is driven by energy		
	from the sun, gravitational forces, and density.		
Dimensions	Developing and	ESS2.C: The Roles of Water in Earth's Surface	Energy and Matter
	Using Models	Processes	 Within a natural or
	 Develop a model 	 Water continually cycles among land, ocean, and 	designed system,
	to describe	atmosphere via transpiration, evaporation,	the transfer of
	unobservable	condensation and crystallization, and precipitation,	energy drives the
	mechanisms.	as well as downhill flows on land.	motion and/or
		 Global movements of water and its changes in form 	cycling of matter.
		are propelled by sunlight and gravity.	
Clarifications	Clarification Statem	ents	
and Content	Evamples of	models can be concentual or physical	
Limits	Content emi	phasis is on the ways water changes its state as it moves	through the multiple
Linnes	pathways of	the hydrologic cycle.	through the multiple
	Practice emp	phasis is on developing a model and being able to explain	n reasoning behind
	choices mad	e relative to the developing or changing of a model. Whi	ile a few interactions
	can be abou	t using the model, the focus should not be on using the r	model or designing an
	experiment	using the model. Any stand-alone items written to this P	E should be centered on
	the develop	ment of models.	
	Content Limits		
	• A quantitative understanding of the latent heats of vaporization and fusion is not assessed.		
	<u>Students do not need to know</u> :		
	 Cloud types 		
	 Types of aquifers and components of aquifers Concepts of subsurface water flow and transmissivity (a.g., normachility/paresity of the 		
	 Concepts of subsurface water flow and transmissivity (e.g., permeability/porosity of the substrate and interactions with fluids: behaviors of subsurface fluids under confinement 		
	substrate and interactions with fluids; behaviors of subsurface fluids under confinement (both quantitatively and qualitatively)		
	(both quantitatively and qualitatively).		
Science	Precipitation, transpiration, evaporation, condensation, crystallization, density, runoff, temperature,		
Vocabulary	air pressure, particle, atmosphere		
Students are			
Expected to			
Know			
Science	Hyporheic zone, aquifer, aquitard, aquiclude, subsurface flow, sublimation, vadose zone,		
Vocabulary	unsaturated zone, water table, phreatic surface, capillary fringe, saturated zone, phreatic zone,		
Students are	drainage basin, watershed, porosity, permeability, transmissivity, recharge, recharge area,		
Not Expected	discharge, discharge area, potentiometric surface, hydraulic head, lithosphere, biosphere,		
	w nyurosphere, cryosphere		
Phenomena Content/ Come anomale alega and for MC 5552.4			
Phenomena	Some example prier	uniena lui Mis-ESSZ-4: a over a bridge on a cool merning, you see fog over the v	river but not over the
	land.		
	 Morning fog 	and mist soon disappears after the sun rises on a clear of	day.
	The Blue Mc	ountains have snow that melts (eventually) into the Colu	mbia River to the John
	Day Dam		
	In the lowa of the lowa of the lowa of the loward of	cornfields in the summer, a dense dome of humidity forr	ms over the cornfields.

This Performance Expectation and associated Evidence Statements support the following Task Demands.			
	Task Demands		
1. Sele nee wat	ct or identify from a collection of potential model components including distractors, the components ded to model the model of evaporation, condensation, transpiration, precipitation or other behaviors of er molecules during the water cycle.		
2. Asse capa	mble or complete, from a collection of potential model components, an illustration or flow chart that is able of representing the phenomenon. This <u>does not</u> include labeling an existing diagram.*		
3. Mar beh	ipulate the components of a model to demonstrate the effects those adjustments would have on the avior of water in the water molecules in the water cycle.*		
4. Mał mar	e predictions about the effects of changes to the parts of the model. Predictions can be based on ipulating model components, completing illustrations, or selecting from a list with distractors.		
5. Ider	tify missing components, relationships, or other limitations of the model.		
6. Des phe	ribe, select, or identify the relationships among components of a model that describe or explains the nomenon.		
7. Ider	tify, describe or explain reasons for choosing components of a model of the water cycle.		

Performance	MS-ESS2-5		
Expectation	Collect data to provide evidence for how the motions and complex interactions of air masses result in		
	changes in weather conditions.		
Dimensions	Planning and Carrying	ESS2.C: The Roles of Water in Earth's Surface	Cause and Effect
	Out Investigations • Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.	 Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted analysis of the predicted analysis of t	• Cause and effect relationships may be used to predict phenomena in natural or designed system.
		probabilistically.	
Clarifications and Content Limits	 Clarification Statements Emphasis is on here weather (defined location to change air masses collide Emphasis is on here Emphasis is on here Examples of data visualizations) or Content Limits Assessment does weather maps or Weather inciden between large so Students do not on weather maps included on weather 	on Statements nphasis is on how air masses flow from regions of high pressure to low pressure, causing eather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed cation to change over time, and how sudden changes in weather can result when different r masses collide. nphasis is on how weather can be predicted within probabilistic ranges. camples of data can be provided to students (such as weather maps, diagrams, and sualizations) or obtained through laboratory experiments (such as condensation). imits seessment does not include recalling the names of cloud types or weather symbols used on eather maps or the reported diagrams from weather stations. //eather incidents internal to air masses are excluded because the focus is on the interfaces etween large scale air masses. cudents do not need to know: Names of the various types of clouds, weather symbols used n weather maps, weather symbols used on reports from weather stations. A legend will be cluded on weather maps.	
Science Vocabulary Students are Expected to Know	Density, temperature, pressure, humidity, precipitation, wind speed, wind direction, air mass, cold/warm front, condensation, evaporation, latitude, altitude, flow, thermometer, barometer, anemometer, dew point, stationary front, occluded front, warm front, cold front		
Science	Horse latitudes, Tropic of Capricorn, Tropic of Cancer, cyclone, anticyclone, isobar, isotherm, pressure		
Vocabulary Students are Not Expected to Know	gradient, Coriolis force*, hygrometer and psychrometer (humidity meters), jet stream, *Coriolis force IS covered in PE MS-ESS2-6, however.		
		Phenomena	
Context/	Some example phenome	na for MS-ESS2-5:	
Phenomena	One fall day starts out warm and fairly still. The wind picks up and the temperature drops and		
	it begins to rain.		

 The flag outside a school has been resting against the flagpole, unmoving all morning. In the early afternoon, it starts flapping in the wind. At sunset, rain begins. Fall days were chilly, then the temperature warmed up for a few days. A tornado formed in the Pacific Ocean near Oregon.
This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
1. Evaluate the sufficiency and limitations of data collected to explain the phenomenon.
 Identify the outcome data that should be collected in an investigation of the interactions of air masses and the resulting changes in weather conditions.
 Make and/or record observations about the interactions of air masses and/or the relationships between those interactions and patterns of weather in a particular location.
4. Describe, illustrate, or select tools, locations, and/or methods to use in investigations of phenomena related to interactions of air masses. This should show how or where measurements will be taken.
 Identify, select, or describe the relevance of particular data or sources relevant to the process of weather forecasting.
6. Predict the effects of given changes in the air masses' interactions on subsequent weather.
7. Identify or specify inferences supported by data collected.

Performance MS ESS2-6	MS ESS2-6		
Expectation Develop and use a model to describe how unequal heating and rotation of the Earth cause patte	Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of		
atmospheric and oceanic circulation that determine regional climates.	atmospheric and oceanic circulation that determine regional climates.		
Dimensions Developing and Using ESS2.C: The Roles of Water in Earth's Surface Systems and	tem		
Models Processes Models			
Develop and use a Variations in density due to variations in Models can be	used		
model to describe temperature and salinity drive a global pattern of to represent			
phenomena. interconnected ocean currents. systems and the	eir		
interactions—	uch		
ESS2.D: weather and climate as influenced by	esses		
• Weather and climate are influenced by and outputs—	unu band		
atmosphere ice landforms and living things information fl	, anu		
These interactions vary with latitude altitude within system?			
and local and regional geography, all of which can	-		
affect oceanic and atmospheric flow patterns.			
• The ocean exerts a major influence on weather			
and climate by absorbing energy from the sun,			
releasing it over time, and globally redistributing			
it through ocean currents.			
Clarifications Clarification Statements	Clarification Statements		
Emphasis is on now patterns vary by latitude, altitude, and geographic land distribution.	• Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution.		
Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Col Effect, and resulting provoiling winds; omphasis of according to the transfer of	• Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis		
Effect, and resulting prevaiing winds; emphasis of ocean circulation is on the transfer of by the global ocean convection cycle, which is constrained by the Coriolis Effect and the	by the global ocean convection cycle, which is constrained by the Coriolis Effect and the		
outlines of continents	outlines of continents.		
 Examples of models can be diagrams, maps and globes, or digital representations. 			
Content Limits	Content Limits		
 Assessment does not include the dynamics of the Coriolis effect. 	Assessment does not include the dynamics of the Coriolis effect.		
<u>Students do not need to know</u> : names of specific winds, different cloud types (cumulus, et al. 1996)	<u>Students do not need to know</u> : names of specific winds, different cloud types (cumulus, cirrus		
etc.), names of specific ocean currents, or perform any quantitative analyses based on the	etc.), names of specific ocean currents, or perform any quantitative analyses based on the		
Coriolis Effect, mathematical calculations beyond trends, or measurements of central	Coriolis Effect, mathematical calculations beyond trends, or measurements of central		
tendency.	tendency.		
Science Climate, temperature, atmospheric pressure, density, current, latitude, altitude, Coriolis effect,			
Vocabulary convection, condensation, precipitation, cloud, water cycle, air mass circulation, vegetation, latit	convection, condensation, precipitation, cloud, water cvcle, air mass circulation, vegetation, latitude,		
Students are longitude, rain shadow.	longitude, rain shadow.		
Expected to			
Know			
Science Trade winds, Easterlies, Westerlies, cumulus, cirrus, or other cloud names, Gulf Stream, Labrador	, UV		
Vocabulary rays, horse latitudes, Tropic of Cancer, Tropic of Capricorn.			
Students are			
Not			
Expected to			
Rhow Bhenomena	Dhanamana		
FIEIUIIEIId			
Context/ Some example phenomena for MS-ESS2-6:			

	 In December 2010, Gary, Indiana, on the southeast shores of Lake Michigan, had approximately 30 inches of snow over a three-day period, whereas Chicago, Illinois, 30 miles away, received barely any snow. Onshore and offshore breezes—in the morning, the breeze comes in from the ocean. At night, the breeze is blowing in the opposite direction. Wind storms in the Sahara become hurricanes that affect the east coast of North America and the Caribbean, but not the coast of South America. The Westerlies vs. The Easterlies and the trade winds—why are these wind patterns banded as you move north from the equator? 				
This P	erformance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands				
1. Select for a ocea air te	t or identify from a collection of potential model components, including distractors, components needed model that can explain the effect of unequal heating of Earth's surface. Components might include ns, land forms, wind currents, ocean currents, energy flows, upwelling, downwelling, water temperature, emperature, and salinity.				
2. Asse heat inclu tem	mble or complete an illustration or flow chart that is capable of representing the effect of unequal ing of Earth's systems on atmospheric and oceanic circulation. Key components of the model might de: oceans, land forms, wind current, ocean current, energy flows, upwelling, downwelling, water perature, and salinity.				
3. Man that	ipulate the components of a model to demonstrate the changes, properties, processes, and/or events act to result in a phenomenon.				
4. Mak man pred etc.	e predictions about the effects of changes in temperature on a phenomenon. Predictions can be made by ipulating model components, completing illustrations, or selecting from lists with distractors. Make ictions about the effects of changes in water temperature or density, distance from the lake, location,				
5. Iden	tify missing components, relationships, or other limitations of a model.				
6. Desc unec	ribe, select, or identify the relationships among components of a model that explain the effect of Jual heating of Earth's systems on atmospheric and oceanic circulation.				
Performance	MS-ESS3-1				
--	--	--	--------------------	--	--
Expectation	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's				
	mineral, energy, and groundwater reso	urces are the result of past and current ge	eoscience		
	processes.				
Dimensions	Constructing Explanations and	ESS3.A: Natural Resources	Cause and Effect		
	Designing Solutions	 Humans depend on Earth's land, 	• Cause-and-effect		
	Construct a scientific explanation	ocean, atmosphere, and biosphere	relationships		
	based on valid and reliable evidence	for many different resources.	may be used to		
	obtained from sources (including	Minerals, fresh water, and biosphere	predict		
	the students' own experiments) and	resources are limited, and many are	phenomena in		
	the assumption that theories and	not renewable or replaceable over	natural or		
	laws that describe the natural world	human lifetimes. These resources	designed		
	operate today as they did in the	are distributed unevenly around the	systems.		
	past and will continue to do so in	planet as a result of past geologic	-,		
	the future.	processes.			
		P			
Clarifications	Clarification Statements				
and Content	 Emphasis is on how these resources 	rces are limited and typically non-renewa	hle and how their		
Limits	distributions are significantly ch	anging as a result of removal by humans	bic, and now then		
Linits	Examples of upoyon distribution	anging as a result of removal by humans.	s includo but aro		
	 Examples of uneven distribution not limited to petroleum (location) 	as of the burial of organic marine sedime	ets and subsequent		
	goologic trans), motal eros (local	tion of past volcanic and hydrothormal ac	tivity associated		
	with subduction zones) and soil	(location of active weathering and/or de	nosition of rock)		
	with subduction zones), and son		position of fock).		
Science	Agricultural biosphere conservation consumption deposition distribution efficient energy				
Vocabulary	source geologic trap bydrothermal im	upact interdependence marine sediment	metal ore		
Students Are	organic potroloum regulation renowa	ble operate subduction zone	, metalore, ,		
Expected to	l organic, petroleuni, regulation, renewa	ble energy, subduction zone.			
Know					
Science	Ritumen harvesting of resources visco	us natural gas oil shale sustainability ta	r cand extract		
Vocabulary	irroversible	us, natural gas, on snale, sustainability, ta	i sanu, extract,		
Students Are					
Not Exported					
to Know					
	Dho	nomena			
Context/	Some example phenomena for MS ESS	2-1·			
Phenomena	Large surface deposits of sand s	p-1.	scachusotts than		
Thenomena	Large surface deposits of sand a thow are in Virginia				
	Diamonds are found on the gro	und in a State Dark in couthwestern Arkar	2020		
	Diamonus are round on the gro	forsil tree roots are found in an average	isas.		
	Bauxite, an Aluminum ore, and	iossil tree roots are found in an exposure	in Queensiand,		
	Australia.				
	A well is drilled and water is dis	covered near colorado Springs, CO. Ten n	niles to the		
	Southwest, another well is drille	ed to the same depth and no water is disc	covered.		
This Perfe	ormance Expectation and associated Evid	ence Statements support the following Ta	isk Demands.		
lask Demands					
1. Articulat	1. Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This				
may entail sorting relevant from irrelevant information or features.					

- Express or complete a causal chain explaining that the uneven distribution of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.
- 3. Identify evidence supporting the inference of causation that is expressed in a causal chain.
- 4. Use an explanation to predict the distribution of Earth's mineral, energy, or groundwater resources, given a change in current geoscience processes.
 - 5. Describe, identify, and/or select information needed to support an explanation.

Performance	MS-ESS3-2			
Expectation	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the			
	development of technologies to mitigate their effects.			
Dimensions	Analyzing and	ESS3.B: Natural Hazards	Patterns	
	Interpreting Data	 Mapping the history of natural hazards in a 	 Graphs, charts, and 	
	 Analyze and interpret 	region, combined with an understanding of	images can be used to	
	data to determine	related geologic forces, can help forecast	identify patterns in	
	similarities and	the locations and likelihoods of future	data.	
	differences in findings.	events.		
Clarifications	Clarification Statements			
and Content	Emphasis is on how	w some natural hazards, such as volcanic erupti	ons and severe weather,	
Limits	are preceded by p	henomena that allow for reliable predictions, b	ut others, such as	
	earthquakes, occu	r suddenly and with no notice, and thus are not	t yet predictable.	
	Examples of natur	al hazards can be taken from interior processes	(such as earthquakes and	
	voicanic eruptions), surface processes (such as mass wasting and	tsunamis), or severe	
	weather events (si	uch as nurricanes, tornadoes, and hoods).		
	 Examples of data of bazards 	can include the locations, magnitudes, and freq	uencies of the natural	
	IIdZdrus.	alagias can ba glabal (such as catallita sustama	to monitor hurrisonos or	
	• Examples of technic forest fires) or loca	ologies call be global (such as satellite systems	regions or reservoirs to	
	mitigate droughts)			
	initigate aroughts,			
	Content Limits			
	 Analysis may include recognizing patterns in data, identifying periodicity, straightforward 			
	mathematical comparisons (more, less, faster, slower), examining trends, looking for			
	differences in tabu	ilar data, qualitative spatial analysis (e.g., lookir	ng at fault lines),	
	recognizing trends	and patterns. May include drawing lines of bes	st fit and extrapolating	
	from those lines.			
	Analysis should no	t include regression analysis or calculating corre	elations.	
Science	Air mass, air mass circulati	on, altitude, atmospheric circulation, biosphere	e, carbon dioxide, climatic	
Vocabulary	pattern, condensation, cor	nvection cycle, Coriolis effect, cyclical, density, o	distribution, geography,	
Students are	geological, gradual, intens	ity, land distribution, latitude, longitude, ocean	circulation, orbit,	
Expected to	orientation, pressure, redistribute, salinity, store, tectonic, tectonic cycle, tilt, transfer, unequal			
Know	heating of air, unequal heating of land masses, unequal heating of oceans, weather map,			
	catastrophic, debris, frequ	ency, geologic, interdependent, magnitude, ma	iss wasting, natural	
	process, reservoir, satellite			
Science	Concentration, electromag	gnetic radiation, radiation, sea level.		
Vocabulary				
Students are				
Not Expected				
LO KHOW		Phonomona		
Context/	For this performance ever	ctation the phenomena are sets of data. Those	are the observed facts	
Phenomena	that the kids will look at to	discover natterns Below we enumerate some	of the natterns that might	
ricionena	comprise the data sets (nh	enomena) to be analyzed	or the patterns that hight	
		chomenay to be unaryzed.		
	Patterns that describe the	data sets for MS-ESS3-2:		

 A sequence of maps illustrates temperature patterns and occurrence of tornados over the course of the year (to identify variations of tornado risk across regions and also to identify more proximate predictors of tornados). A sequence of maps illustrates temperature and humidity patterns and occurrence of hurricanes over the course of the year (to identify variations of hurricane risk across regions and also to identify more proximate predictors of hurricanes). Temperature and humidity patterns in the Pacific Ocean can be correlated to the snow pack on Mt. Hood. A map of average snowfall in the Great Lakes region shows more snow has fallen in locations nearer to the lakes. Data include surface temperatures, water temperature, wind patterns and snowfall. 				
This Performance Expectation and associated Evidence Statements support the following Task Demands.				
Task Demands				
 Organize/Arrange data to highlight patterns, trends, or correlations between natural hazards and geologic/atmospheric events that occur before a natural hazard.* 				
 Tabulate/Graph data to highlight patterns, trends, or correlations between natural hazards and geologic/atmospheric events that occur before a natural hazard.* 				
3. Use relationships identified in the data to predict natural hazards.				
4. Illustrate or describe patterns over time that can be used to predict natural hazards.*				
5. Identify human and societal responses designed to mitigate catastrophic natural hazards.				

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	MS-ESS3-3		
Expectation	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment		
Dimonsions	Constructing	ESS2 C: Human Impacts on Earths Systems	Cause and Effect
Dimensions	Explanations and Designing Solutions • Apply scientific principles to design an object, tool, process or system.	 ESS3.C: Human impacts on Earth's Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing extinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts of Earth unless the activities and technologies involved are engineered otherwise. 	 Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation.
Clarifications	Clarification Statem	ents	
and Content Limits	 Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the constructions of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as air, water, or land). Content Limits Students will not describe the relationship between natural resources and sustainability 		
Science	Wetland agriculture	e development fertile groundwater industry material we	orld mineral river
Vocabulary Students are Expected to Know	delta, aquifer, economic, land usage, levee, water usage, consumption, land use management, conservation, preservation		
Science Vocabulary Students are Not Expected to Know	Anthropogenic changes, urban development, biomass, degradation, destabilize, geoengineering, ozone, pollutant, sea level, stabilize, waste management, harvesting of resources, cost-benefit		
		Phenomena	
Context/ Phenomena	Engineering perform phenomena.	nance expectations are built around meaningful design pro	blems rather than
	Some example desig Nurdles are plastic produ- and end up i Glen Canyor largest reser naturally rep is filling Lake dam's ability	in problems for MS-ESS3-3: small plastic pellets, smaller than a pea. Billions of them ar ucts. Many fall out of the truck or ship container that they in oceans where they are mistaken as food by marine anime n Dam is located on the Arizona and behind it sits Lake Pow rvoir in the United States. Glen Canyon Dam holds back sec plenish downstream ecosystems. The sediment that is trap e Powell at a rate of roughly 100 million tons of sediment a y to store water.	re used in creating are transported in hals. yell the second diment that would ped behind the dam year, decreasing the

	 Farmers in Iowa plow their fields in the spring in order to break up the thick soil and disrupt weeds from growing. The practice of plowing however, causes farmers to lose valuable top soil due to wind erosion. In the central North Pacific Ocean there is what is described as a great garbage patch. This large area has high concentrations of plastics, fishing nets, and other debris. This debris is sometimes mistaken as food by marine animals. 		
This Per	ormance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
 Identify or assemble from a collection, including distractors, the relevant aspects of human impact on the environment that given design solutions, if implemented, will resolve/improve. 			
2. Using t which	he given information about human impact on the environment, select or identify the criteria against he device or solution should be judged.		
3. Using g device	iven information about human impact on the environment, select or identify constraints that the or solution must meet.		
4. Using g minimi	viven data, propose/illustrate/assemble a potential device (prototype) or solution to monitor and/or ze human impact on the environment.		
5. Using a testing	simulator, test a proposed prototype and evaluate the outcomes, potentially including proposing and modifications to the prototype.		

Performance	MS-ESS3-4			
Expectation	Construct an argument supported by evidence for how increases in human population and per-			
	capita consumption of natural resourc	es impact Earth's systems.		
Dimensions	Engaging in Argument from	ESS3.C: Human Impacts on Earth	Cause and Effect	
	Evidence	Systems	 Cause and effect 	
	 Construct an oral and written 	 Typically, as human populations 	relationships may be	
	argument supported by empirical	and per-capita consumption of	used to predict	
	evidence and scientific reasoning	natural resources increase, so	phenomena in natural	
	to support or refute an	do the negative impacts on	or designed systems.	
	explanation or a model for a	Earth, unless the activities and		
	problem	engineered otherwise		
	problem.	engineered otherwise.		
Clarifications	Clarification Statements			
and Content	Examples of evidence include	grade-appropriate databases on hum	nan populations and the	
Limits	rates of consumption of food a	and natural resources such as fresh v	vater, minerals, and	
	energy sources.		asition and structure of	
	 Examples of impacts can include Earth's systems as well as the 	rates at which they change. The cons	equences of increases in	
	human populations and consu	mption of natural resources are desc	cribed by science, but	
	science does not make the dec	cisions for the actions society takes.		
	Content Limits			
	Assessment is limited to one form of consumption and its associated impacts.			
	Students do not need to know: mechanisms or details about interior geological processes,			
	changes in land surface use.			
Science	Conservation, recycling, perishable, sy	nthetic, manufactured, rivers, lakes,	groundwater, fertile,	
Vocabulary	delta, fossil fuels, pollution, composition	on, glacier, mass, volume, concentrat	tion.	
Students Are				
Expected to				
Science	Tar sands, oil shales, agricultural efficiency, urban planning, aesthetics, biomass, glacial ice volumes			
Vocabulary	hydrosphere, cryosphere, geosphere, acidification, empirical evidence, polar caps.			
Students Are				
Not Expected				
to Know				
Cantert	Phi	enomena		
Context/	some example phenomena for MS-ESS			
Phenomena	 Lake Urmia in Iran was once the used to be 	ie nation's largest lake. Today, the la	ke is 5% as large as it	
	 In 1990 much of the tropical r 	ain forests on the Hainan Island wor	e clear-cut to obtain	
	wood, and to create space for	plantations. Today. the forests are si	till smaller and less	
	developed than they were bef	ore 1990.		
	• A coal power plant in Martins	Lake, Texas, releases huge clouds of	gas into the air every day.	
	• The open-pit copper mine Ok Tedi Mine in Papua, New Guinea, releases its drainage nearby.			
	Downstream, the rivers turned	orange and the fish died.		

	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information.
2.	Predict outcomes when properties or amounts of consumption are changed, given the inferred cause and effect relationships.
3.	Describe, identify, and/or select information needed to support an explanation of how increases in human population and per-capita consumption of natural resources impact Earth's systems.
4.	Identify patterns or evidence in the data that support conclusions about the relationship between per capita consumption and limited natural resources.*
5.	Using evidence, explain the relationship between per capita consumption and limited natural resources.*
6.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.*

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	MS-ESS3-5			
Expectation	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over			
	the past century.			
Dimensions	Asking	ESS3.D: Global Climate Change	Stability and	
	Questions and	• Human activities, such as the release of greenhouse gases	Change	
	Defining	from burning fossil fuels, are major factors in the current rise	 Stability might 	
	Problems	in Earth's mean surface temperature (global warming).	be disturbed	
	 Ask questions 	Reducing the level of climate change and reducing human	either by	
	to identify	vulnerability to whatever climate changes do occur depend	sudden events	
	and clarify	on the understanding of climate science, engineering	or gradual	
	evidence of	capabilities, and other kinds of knowledge, such as the	changes that	
	an argument.	understanding of human behavior and on applying that	accumulate	
		knowledge wisely in decisions and activities.	over time.	
Clarifications	Clarification Stat	ements		
Limite	Examples production	s of factors include numan activities (such as fossil-fuel combustio	n, cement	
LIMITS	productio	on, and agricultural activity) and natural processes (such as change	es in incoming	
	Solai Tau	action of volcanic activity).	gional	
	• Examples	tures: atmospheric levels of gases such as carbon dioxide and met	bane: and the	
	rates of h	numan activities. Emphasis is on the major role that human activit	ies play in causing	
	the rise i	n global temperatures.		
Science	Force, rotation, intensity, physical change, glacial, weather condition, natural resource, natural			
Vocabulary	process, catastrophic, cycle, atmospheric composition, environmental, pollution, societal, renewable			
Students Are	resource, nonrenewable, oil, absorb.			
Expected to				
Know				
Science	Climactic pattern	, cyclical, concentration, magnitude, destabilize, consumption, civ	ilization,	
Vocabulary	degradation, pollutant, sea level, stable, natural gas.			
Students Are				
Not Expected				
to Know				
Phenomena Context/ Some example phenomena for MS-ESS2-5:				
Phenomena	A region	in the Saint Flias Mountains in Alaska used to be covered by Plate	au Glacier. It is	
	now pop	ulated with thick vegetation and lake.		
	On Decer	mber 14th, 2016, the Deely Power Plant was operating. Its chimne	ey emitted a large	
	cloud of	white smoke.		
	The Solor	mon Islands are a group of small islands located in the Pacific Ocea	an. Five of these	
	islands di	isappeared in 2016.		
	 Mount Ef 	tna, one of the world's most active volcanoes, erupted in May 201	6, delivering large	
	plumes o	f smoke that filled the horizon.		
This Perfo	ormance Expectation	on and associated Evidence Statements support the following Task	CDemands.	
6 Organiza	and/or arrange /	Idsk Demanus	ht trands	
natterns	or correlations	e.e., using mustrations and/or labels/ or summarize data to mgmig	ni u enus,	
7. Generat	7. Generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document			
l patterns	, irenus, or correla	itions relating to climate change. This may include sorting out dist	Ialluis.	

8.	Express or complete a causal chain explaining the effects that climate change has on the environment. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram or completing cause-and-effect chains.
9.	Compile, from given information, the particular data needed for a particular inference about the relationship between greenhouse gas emissions and rising global temperatures. This can include sorting out the relevant data from the given information.
10.	Describe, select, or identify the relationships among components of a model that describe the mechanism of rising global temperatures, or explain the consequences of rising global temperatures.
11.	Select, from a list of potential hypotheses including distractors, either the testable hypothesis from untestable hypotheses or the best hypothesis to clarify evidence relating to climate change.
12.	Construct or assemble a valid hypothesis that clarifies evidence relating to climate change.
13.	Select from a list of questions, including distractors, about the relationships among the data that either support or contradict a hypothesis or to clarify data that describe the mechanism of rising global temperatures, or explain the consequences of rising global temperatures.
14.	Ask questions to obtain or clarify information related to the rise of global temperatures in the past century.

Specifications for High School

Introduction

This document presents *cluster specifications* for use with the Next Generation Science Standards (NGSS). These standards are based on the Framework for K-12 Science Education. The present document is not intended to replace the standards, but rather to present guidelines for the development of items and item clusters used to measure those standards.

The remainder of this section provides a very brief introduction to the standards and the framework, an overview of the design and intent of the item clusters, and a description of the cluster specifications that follow. The bulk of the document is composed of cluster specifications, organized by grade and standard.

Background on the framework and standards

The Framework for K-12 Science Education are organized around three core dimensions of scientific understanding. The standards are derived from these same dimensions:

- Disciplinary Core Ideas: The fundamental ideas that are necessary for understanding a given science discipline. The core ideas all have broad importance within or across science or engineering disciplines, provide a key tool for understanding or investigating complex ideas and solving problems, relate to societal or personal concerns, and can be taught over multiple grade levels at progressive levels of depth and complexity.
- Science and Engineering Practices: The practices are what students DO to make sense of phenomena. They are both a set of skills and a set of knowledge to be internalized. The SEPs reflect the major practices that scientists and engineers use to investigate the world and design and build systems.
- Cross-Cutting Concepts: These are concepts that hold true across the natural and engineered world. Students can use them to make connections across seemingly disparate disciplines or situations, connect new learning to prior experiences, and more deeply engage with material across the other dimensions. The NGSS requires that students explicitly use their understanding of the CCCs to make sense of phenomena or solve problems.
- There is substantial overlap between and among the three dimensions. For example, the cross-cutting concepts are echoed in many of the disciplinary core ideas. The core ideas are often closely intertwined with the practices. This overlap reflects the nature of science itself. For example, we often come to understand and communicate causal relationships by employing models to make sense of observations. Even within a dimension, overlap exists. Quantifying characteristics of phenomena is important in developing an understanding of them, so employing computational and mathematical thinking in the construction and use of models is a very common scientific practice, and one of the cross-cutting concepts suggests that scientists often infer causality by observing patterns. In short, the dimensions are not orthogonal.

The framework envisions effective science education as occurring at the intersection of these interwoven dimensions: students learn science by doing science—applying the practices through the lens of the cross-cutting concepts to investigate phenomena that relate to the content of the disciplinary core ideas.

Item clusters

Each item cluster is designed to engage the examinee in a grade-appropriate, meaningful scientific activity aligned to a specific standard.

Each cluster begins with a phenomenon, an observable fact or design problem that engages student interest and can be explained, modeled, investigated, or designed using the knowledge and skill described by the standard in question.

What it means to be observable varies across practices. For example, a phenomenon for a performance expectation exercising the *analyze data* practice may be observable through regularities in a data set, while standards related to the *development and use of models* might be something that can be watched, seen, felt, smelled, or heard. What it means to be observable also varies across grade levels. For example, elementary-level phenomena are very concrete and directly observable. At the high school level, an observation of the natural world may be more abstract--for example, "observing" changes in the chemical composition of cells through the observation of macroscopic results of those changes on organism physiology, or through the measurement of system- or organ-level indications. Content limits refine the intent of the performance expectations and provide limits on what may be asked of items in the cluster to structure the student activity. The content limits also reflect the disciplinary core ideas learning progressions that are present in the K-12 Framework for Science Education.

The task or goal should be explicitly stated in the stimulus or the first item in the cluster: statements such as "In the questions that follow, you will develop a model that will allow you to identify moons of Jupiter," or "In the questions below, you will complete a model to describe the processes that lead to the steam coming out of the teapot." Whereas item clusters have been described elsewhere as "scaffolded," they are better described as providing structure to the task. For example, some clusters begin with students summarizing data to discover patterns that may have explanatory value. Depending on the grade level and nature of the standard, items may provide complete table shells or labeled graphs to be drawn, or may require the student to choose what to tabulate or graph. Subsequent items may ask the student to note patterns in the tabulated or graphed data and draw on domain content knowledge to posit explanations for the patterns.

These guidelines for clusters do not appear separately in the specifications. Rather, they apply to all clusters.

Structure of the cluster specifications

The item cluster specifications are designed to guide the work of item writers and the review of item clusters by stakeholders.

Each item cluster has the following elements:

- The text of the performance expectations, including the practice, core idea, and cross-cutting concept.
- Content limits, which refine the intent of the performance expectations and provide limits of what may be asked of examinees. For example, they may identify the specific formulae that students are expected to know or not know.
- Vocabulary, which identifies the relevant technical words that students are expected to know, and related words that they are explicitly not expected to know. The vocabulary included in both sections (Students are Expected to Know and Students Are Not Expected to Know) were developed after the reviews of standards at the current/preceding grades, the original NGSS documentation, and item writer reference documentation including the Children Writers' Word Book and ED Core Vocabularies in Reading, Mathematics, Science and Social Studies. All vocabulary included in the specifications was reviewed and edited by teacher committees during the specification reviews by states. Of course, the latter category should not be considered exhaustive, since the boundaries of relevance are ambiguous, and the list is limited by the imagination of the writers/reviewers.
- Sample phenomena, which provide some examples of the sort of phenomena that would support effective item clusters related to the standard in question. In general, these should be guideposts, and item writers should seek comparable phenomena, rather than drawing on those within the documents. Novelty is valued when applying scientific practices.
- Task demands comprise the heart of the specifications. These statements identify the types of items and activities that item writers should use, and each item written should be clearly linked to one or more of the demands. The verbs in the demands (e.g., *select, identify, illustrate, describe*) provide guidance on the types of interactions that item writers might employ to elicit the student response. We avoid explicitly identifying interaction types or item formats to accommodate future innovations and to avoid discouraging imaginative

work by the item writers. All task demands should be aligned to a minimum of one of the three dimensions (DCI, SEP and CCCs) and across task demands within a cluster, all three dimensions must be addressed.

• For each cluster we present, the printed documentation includes the cluster, the task demands represented by each item, and its linkage to the content, practice and cross-cutting concept identified in the performance expectation.

Item cluster specifications follow, organized by domain and standard.

Performance	HS-PS1-1			
Expectation	Use the periodic table as a model to predict the relative properties of elements based on the			
	patterns of electrons in the outermost energy level of atoms.			
Dimensions	Developing and	PS1.A: Structure and Properties of Matter	Patterns	
	Using Models	• Each atom has a charged substructure consisting	• Different patterns may	
	 Use a model to 	of a nucleus, which is made of protons and	be observed at each of	
	predict the	neutrons, surrounded by electrons.	the scales at which a	
	relationships	• The periodic table orders elements horizontally by	system is studied and	
	between systems	the number of protons in the atom's nucleus and	can provide evidence	
	or between	places those with similar chemical properties in	for causality in	
	components of a	columns. The repeating patterns of this table	explanations of	
	system.	reflect patterns of outer electron states.	phenomena.	
Clarifications	Clarification Statem	ents	I	
and Content	 Examples of 	properties that could be predicted from patterns coul	d include reactivity of	
Limits	metals, type	s of bonds formed, numbers of bonds formed, and rea	, ictions with oxygen.	
			/0-	
	Content Limits			
	Assessment	is limited to main group elements.		
	Assessment	does not include quantitative understanding of ionizat	ion energy beyond	
	relative tren	ds.		
	Students do	not need to know: Properties of individual elements, r	names of groups.	
	anomalous electron configurations (Chromium and Copper)			
		0 (11)		
Science	Proton, electron, neutron, valence shell, filled shell, ion, cation, anion, metal, nonmetal, metalloid,			
Vocabulary	group, period, family	y, pure substance, atomic number, atomic symbol, ato	mic weight, ionic bond,	
Students are	covalent bond, s, p, d, f orbitals, electron configuration, core electrons, nucleus, single, double,			
Expected to	triple bond(s), molar	mass, atomic radius, electronegativity,		
Know				
Science	Oxidation state, diat	omic, polyatomic ions, empirical formulas, molecular f	ormulas, quantum,	
Vocabulary	photon, Heisenberg Uncertainty Principle, Hund's Rule, Pauli Exclusion Principle			
Students are				
Not Expected				
to Know				
		Phenomena		
Context/	Some example phen	omena for HS-PS1-1:		
Phenomena	 Potassium c 	hloride (KCl) tastes similar to table salt (sodium chlorid	e (NaCl)).	
	 Balloons are 	filled with helium gas instead of hydrogen gas.		
	Scientists we	ork with silicate substrates in chambers filled with Argo	on instead of air.	
	 Diamond, gr 	aphene, and fullerene are different molecules/materia	als that are only made of	
	carbon.			
This Perfo	ormance Expectation a	and associated Evidence Statements support the follow	ving Task Demands.	
		Task Demands		
1. Select of	r identify from a colled	ction of periodic table components (periods, groups, et	c.), including distractors,	
the com	ponents needed to m	odel the phenomenon.		
2 Make predictions about the properties of elements based on the number of valence electrons. Predictions				
can he n	2. Make predictions about the properties of elements based on the number of valence electrons. Predictions			
can be n	in a completing in			

- 3. Identify missing components, relationships, or other limitations of the model. (Hydrogen similar to Alkali metals, one valence electron, and Halogens, missing only one valence electron).
 - 4. Describe, select, or identify the relationships among components of the periodic table that describe the properties of valence electrons, or explains the properties of elements.

Performance	HS-PS1-2			
Expectation	Construct and revise an explanation	tion for the outcome of a simple chemical rea	ction based on the	
	outermost electron states of ato	oms, trends in the periodic table, and knowled	ge of the patterns of	
	chemical properties.			
Dimensions	 Constructing explanations and designing solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future 	 PS1.A: Structure and Properties of Matter The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS1.B: Chemical Reactions The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions. 	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. 	
Clarifications	Clarification Statements			
and Content	Examples of chemical real and oxygon, or of carbox	actions could include the reaction of sodium ar	nd chlorine, of carbon	
LITTICS	and oxygen, or of carbon and hydrogen.			
	Content Limits			
	Assessment is limited to	chemical reactions involving main group elem	ents and combustion	
	reactions.			
Science	Reversible atomic weight chem	nical hand electron sharing ion outer electro	n state energy level	
Vocabulary	electron transfer. concentration	. equilibrium. endothermic. exothermic. stable	e. combustion.	
Students are	yield(s), flammability, octet	,,,,,	.,,	
Expected to				
Know				
Science	Molecular orbital diagram, multi	iplicity, antibonding orbitals, rearrangement, l	by-product,	
Vocabulary	oxidation-reduction reaction, decomposition, single replacement reaction, double replacement			
Students are	reaction, synthesis reaction, precipitate			
to Know				
	l	Phenomena		
Context/	Some example phenomena for F	IS-PS1-2:		
Phenomena	A coal oven without pro	oper ventilation produces billows of dark smol	ke.	
	Two metals are placed in	n water. One bubbles and fizzes, while the oth	er gives off a vellow	
	flame and white smoke.		0	
	Carlsbad Caverns is a lar	ge cave in New Mexico. Inside, large pointy st	ructures appear to	
	be growing from the cei	ling.		
	A shiny metallic solid is a	combined with a green gas, resulting in a whit	e crystalline solid.	
Ins Performance Expectation and associated Evidence Statements support the following Task Demands.				
		lask Demands		

15. Use relationships identified in the data to predict properties of other chemical compounds, elements, and/or mixtures.	
16. Identify patterns or evidence in the data that supports inferences about the properties of other chemical compounds/elements/mixtures.	
 Organize and/or arrange (e.g., using illustrations and/or labels), or summarize data to highlight trends, patterns, or correlations. 	
18. Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.	
19. Use an explanation to predict the properties of other chemical compounds/elements/mixtures given a change in reagents or conditions.	
20. Generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations relating to the periodic table. This may include sorting out distractors.	
21. Select, articulate, or construct an explanation about a chemical reaction. This may include identifying/selecting the products of the reaction as part of an explanation.	

Performance	HS-PS1-3			
Expectation	Plan and conduct an investigation to gather evidence to compare the structure of substances at the			
	bulk scale to infer the strength of electrical forces between particles.			
Dimensions	Planning and Carrying Out Investigations	PS1.A Structure and	Patterns	
	• Plan and conduct an investigation individually	Properties of Matter	 Different patterns may 	
	and collaboratively to produce data to serve	 The structure and 	be observed at each of	
	as the basis for evidence, and in the design:	interactions of	the scales at which a	
	decide on types, how much, and accuracy of	matter at the bulk	system is studied and	
	data needed to produce reliable	scale are	can provide evidence	
	measurements and consider limitations on the	determined by	for causality in	
	precision of the data (e.g., number of trials,	electrical forces	explanations of	
	cost, risk, time), and refine the design	within and between	phenomena.	
	accordingly.	atoms.		
Clarifications	Clarification Statements			
and Content	 Emphasis is on understanding the strengt 	h of forces between par	ticles. not on naming	
Limits	specific intermolecular forces (such as dig	ole-dipole).	0	
	• Examples of particles could include ions, a	atoms, molecules, and n	etworked materials (such	
	as graphite).			
	Examples of bulk properties of substances	s could include the melti	ing point and boiling point,	
	vapor pressure, and surface tension.			
	Contant Limits			
	Assessment does not include Baoult's law nor calculations of vanor pressure			
	- Assessment does not include habits have not calculations of vapor pressure.			
Science	Nucleus, proton, electron, neutron, electron cloud, intramolecular force, covalent bond, ionic bond,			
Vocabulary	intermolecular force, electrostatic force, electronegativity, electron distribution, polarity, temporary			
Students Are	polarity, permanent polarity, polarize, surface area, atomic radius, atomic weight, atomic mass,			
Expected to	solute, solvent, dissolve.			
Know				
Science	Dipole, induced dipole, dipole moment, delta, Con	ulomb's law, dipole-dipo	le, London forces, Van der	
Vocabulary	vvaais forces, ion-dipole, hydrogen bonding, pi-electron cloud, pi stacking, colligative properties,			
Students Are	electron shielding.			
Not Expected				
to know	Dhanamana			
Context/	Some example phenomena for HS-PS1-3:			
Phenomena	Two noighbors apply different calt treatments to their driveways the night before a fracta is			
Thenomena	nredicted. The next morning, no ice formed on one of their driveways. However, the other			
	driveway was covered with a thin layer of ice.			
	 A chef makes salad dressing by completely mixing oil, water, and vinegar in a large 			
	container. Afterwards, he pours the mixe	d dressing from the large	e container into individual	
	containers and places one container on each of the restaurant's tables before leaving for			
	the night. In the morning, the chef finds a layer of oil floating on top of a liquid layer in each			
	of the containers on the tables.			
	After working with painting oils, an artist	finds that she must wasl	h her hands with soap and	
	water to remove the oil from her hands, a	as rinsing with water alo	ne does not remove the	
	oil.			

	 A glass is completely filled with water. When coins are added to the full glass of water, the surface of the water rises above the rim of the glass without spilling.
	This Devfermences Evenetation and essessinted Evidence Statements support the following Task Demonds
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Identify from a list, including distractors, the materials/tools needed for an investigation of the physical
	properties/interactions of atomic and/or molecular substances at the bulk scale to gather evidence about the
	strengths of the electrostatic attractions between the particles of those substances.
2.	Identify the outcome data that should be collected in an investigation of the physical properties/interactions
	of atomic and/or molecular substances at the bulk scale to gather evidence about the strengths of the
	electrostatic attractions between the particles of those substances.
3.	Evaluate the sufficiency and limitations of collected data about the physical properties/interactions of
	substances at the bulk scale to explain the phenomenon.
4.	Make and/or record observations about the physical properties/interactions of substances at the bulk scale
	that provide evidence to support inferences about the relative strengths of the electrostatic attractions
	between the particles of those substances.
5.	Interpret, summarize, and/or communicate the data from an investigation concerning the physical
	properties/interactions of substances at the bulk scale.
6.	Explain or describe the causal processes that lead to the observed data.
7.	Select, describe, or illustrate a prediction concerning the physical properties of or interactions between
	additional substance(s), and/or the strength of electrostatic attractions between the particles of additional
	substance(s), made by applying the findings from an investigation.

Performance	HS-PS1-4		
Expectation	Develop a model to illustrate that the release or absorption of energy from a chemical reaction		
	system depends upon the changes in total bond energy.		
Dimensions	Developing and	PS1.A: Structure and Properties of Matter	Energy and Matter
	Using Models	• A stable molecule has less energy than the same set	 Changes of energy
	 Develop a model 	of atoms separated; one must provide at least this	and matter in a
	based on	energy in order to take the molecule apart.	system can be
	evidence to		described in terms
	illustrate the	PS1.B: Chemical Reactions	of energy and
	relationships	• Chemical processes, their rates, and whether or not	matter flows into,
	or between	terms of the collisions of molecules and the	that system.
	components of a	rearrangements of atoms into new molecules, with	
	system.	consequent changes in the sum of all bond energies	
		in the set of molecules that are matched by changes	
		in kinetic energy.	
Clarifications	Clarification Stateme	ents	
and Content	Emphasis is c	on the idea that a chemical reaction is a system that affec	ts the energy change.
LIMITS	Examples of i	models could include molecular-level drawing and diagra	ms of reactions,
	showing ener	ray is conserved	epresentations
	showing circl		
	Content Limits		
	Assessment does not include calculating the total bond energy changes during a chemical		
	reaction from the bond energies of reactants and products.		
Science	Transfer, heat energy, atomic arrangement, stored energy, conversion, bond energy, release of		
Vocabulary	energy, endothermic	, exothermic	
Expected to			
Know			
Science	Recombination of chemical elements, stable, chemical system, chemical reaction rate		
Vocabulary			
Students are			
Not Expected			
to Know		Dhanan	
Contout/	Somo ovampla phan	Phenomena pmona for HS_RS1_4:	
Context/	Some example phenomena for HS-PS1-4:		
rnenomena	 Sciencists gather samples of rock from the ocean floor. One sample looks and feels like ice, but burns and produces a flame when ignited 		
	 Wet cement is left sitting outside. After one day, the cement becomes hard and stiff. 		
	 A temperature of a sample of tin is lowered from room temperature to 0 °C. The tin 		
	changes color from silver to gray, becomes brittle, and starts developing cracks on its		
	surface.		
	 Baking soda i 	s added to a container of citric acid at room temperature	e. The resulting
	solution becomes cold, and returns back to room temperature after 2 minutes.		
This Performance Expectation and associated Evidence Statements support the following Task Demands			

	Task Demands
1.	Select or identify from a collection of potential model components, including distractors, the components needed to model the phenomenon. Components might include models of bonds breaking and forming, heat absorbed or released, or aspects of a chemical reaction.
2.	Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing a release or absorption of energy from a chemical reaction. This <u>does not</u> include labeling an existing diagram.
3.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.
4.	Make predictions about the effects of changes in bond energies. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.
5.	Describe, select, or identify the relationships among components of a model that describes a release or absorption in energy, or explains why a release or absorption in energy is dependent on total bond energy.

Performance	HS-PS1-5		
Expectation	Apply scientific principles and evidence to provide an explanation about the effects of changing the		
	temperature or concentration	n of the reacting particles on the rate at which	n a reaction occurs.
Dimensions	Constructing Explanations PS1.B: Chemical Reactions Patterns		Patterns
	and Designing Solutions	 Chemical processes, their rates, and 	 Different patterns
	• Apply scientific principles	whether or not energy is stored or	may be observed at
	and evidence to provide	released can be understood in terms of	each of the scales at
	an explanation of	the collisions of molecules and the	which a system is
	phenomena and solve	rearrangements of atoms into new	studied and can
	design problems, taking	molecules, with consequent changes in	provide evidence for
	into account possible	the sum of all bond energies in the set of	causality in
	unanticipated effects.	molecules that are matched by changes	explanations of
		in kinetic energy.	phenomena.
Clarifications	Clarification Statements		
and Content	Emphasis is on stude	nt reasoning that focuses on the number and	energy of collisions
Limits	between molecules.		
	Content Limits		
	Assessment is limited	I to simple reactions in which there are only ty	wo reactants; evidence
	from temperature, co	oncentration, and rate data; and qualitative re	elationships between
	rate and temperature	2.	
Science	Stored energy, heat energy, atomic arrangement, conversion, bond energy, endothermic,		
Vocabulary	exothermic, concentration, reaction rate, activation energy, catalyst, enzyme, equilibrium		
Students are			
Expected to			
Science	Posembination of chamical of	lomente stable chemical system rate laws I	o Chatolior's principlo
Vocabulary	rate constant, zero order rea	ctions first order reactions stenwise reaction	s rate-determining sten
Students are	steady state, half-life, free radicals, entrony, Gibh's free energy		
Not Expected	steady state, han me, nee radieds, entropy, Gbb since energy		
to Know			
	1	Phenomena	
Context/	Some example phenomena fo	or HS-PS1-5:	
Phenomena	One bowl of bread do	ough was set aside to rise in a cool area of a ki	itchen. Another was set
	aside to rise near the warm oven. The dough near the oven rose faster than the dough set		
	in the cool area.		
	• A marble stone was exposed to rain water with different acidities on two different spots on		
	the stone. After some time, one spot on the stone was more eroded than the other.		
	• Cookies baked in an oven set to 170°C took longer to bake than cookies baked in an oven		
	set to 220°C.		
	Inside a fume hood, a	an adult wearing gloves and goggles carefully	added hydrochloric acid
	to a solution containi	ng sodium thiosulfate (Na $_2S_2O_3)$ and a yellow	solid appeared in the
	test tube. Then, dilut	e hydrochloric acid was added to a second tes	st tube of $Na_2S_2O_3$, and
	the yellow solid took longer to appear.		
This Perfo	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
Task Demands			

1.	Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.
2.	Express or complete a causal chain explaining how temperature and/or concentration changes can change the rate of a chemical reaction. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.*
3.	Identify patterns or evidence in the data that supports inferences about the effects of changing temperature or concentration on the rate at which a chemical reaction occurs.
4.	Use an explanation to predict the changes in the rate of other chemical reactions, given a change in reagents or conditions, including temperature and concentration of reactants.
5.	Select, articulate, or construct an explanation about a chemical reaction. This may include identifying/selecting the products of the reaction as part of an explanation.*
6.	Use evidence to construct an explanation of how changing temperature or concentration of reacting particles on the rate of a reaction.*

*denotes task demands that are approved for use with standalones.

Performance	HS-PS1-6		
Expectation	Refine the design of a chemical system by specifying a change in conditions that would produce		
	increased amounts of products at equilibrium.		
Dimensions	Constructing	PS1.B: Chemical Reactions	Stability and Change
	 Explanations and Designing Solutions Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. 	 In many situations, a dynamic and condition- dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (tradeoffs) may be needed. (secondary) 	• Much of science deals with constructing explanations of how things change and how they remain stable.
Clarifications	Clarification Statements		
and Content Limits	 Emphasis is on the application of Le Chatelier's Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products Content Limits Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations. 		
Science Vocabulary Students are Expected to Know	Surface area of reactants, dynamic, thermal energy, heat energy, atomic arrangement, equilibrium, bond energy, endothermic, exothermic, catalyst, chemical bond, mole, element, compound, concentration, Le Chatelier's principle		
Science	Recombination of chemica	l elements, stable, chemical system, chemical react	ion rate
Vocabulary			
Students are			
Not Expected			
ιοκήοω		Dhonomora	
Context/	Some example phonomen	a for HS_DS1_6.	
Phenomena	Some example phenomena for HS-PSI-b:		
Thenomena	• Lettover rood left on the counter overhight spoils more quickly than rood stored in the		
	 Several drops of hydrochloric acid were added to an orange mixture of water and potassium 		
	dichromate (K ₂ CrO ₇). The mixture turned yellow.		
	In the 1970s scient	tists observed that the concentration of ozone (O_3)	in the upper
	atmosphere begar	n decreasing.	
	A bottle of carbon is opened.	ated soda appears to have fewer bubbles before it	is opened than after it
This Performance Expectation and associated Evidence Statements support the following Task Demands.			

Task Demands
 Express or complete a causal chain explaining the chemical processes that resulted in a shift in equilibrium. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.
10. Describe, identify, and/or select evidence supporting the inference of causation that is expressed in a causal chain and/or an explanation of the processes that cause the observed results.
11. Predict the direction or the relative magnitude of a change in equilibrium of a chemical system, given a change in the amount/concentration of chemical substances in the system, the temperature of the substances in the system, and/or the amount of pressure applied to the substances in a system.
12. Identify or assemble from a collection, including distractors, of the relevant aspects of the problem that a given design solution, if implemented, will resolve or improve.
13. Using the given information, select or identify the criteria against which the solution should be judged.
14. Using given data, propose, illustrate, or assemble a potential solution that would shift equilibrium to favor the products of a chemical reaction.
15. Using a simulator, test a proposed solution and evaluate the outcomes, potentially including proposing and testing modifications to the solution.

Performance	HS-PS1-7		
Expectation	Use mathematical representations to support the claim that atoms, and therefore mass, are		
	conserved during a chemical reaction.		
Dimensions	Using Mathematics and	PS1.B Chemical Reactions	Energy and Matter
	Computational Thinking • Use mathematical representations of phenomena to support claims.	• The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions.	• The total amount of energy and matter in closed systems is conserved.
Clarifications	Clarification Statements		
and Content Limits	 Emphasis is on using mathematical ideas to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the macroscopic scale. Emphasis is on assessing students' use of mathematical thinking and not on memorization and rote application of problem-solving techniques. Content Limits Assessment does not include complex chemical reactions. Students do not need to know: Properties of individual elements 		
Science	mole molar ratio molar mass limiting reactant excess reactant yield(s) theoretical yield actual		
Vocabulary Students are Expected to Know	yield, concentration, conversion, reversible, ion, cation, anion, metal, nonmetal, metalloid, pure substance, atomic number, atomic symbol, atomic weight, ionic bond, covalent bond		
Science	Dimensional analysis, stoichiometry, (dynamic) equilibrium, La Chatlier's Principle, oxidation state,		
Vocabulary Students are Not Expected	diatomic, polyatomic ion, empirical formula, by-product, oxidation-reduction reaction, decomposition, single replacement reaction, double replacement reaction, synthesis reaction, combustion reaction, precipitate, solvent, solute, reaction rate, recombination of chemical elements,		
to Know	stable		
Phenomena			
Context/	Some example phenomena for	or HS-PS1-7:	
Phenomena	 Methane gas flows into a Bunsen burner. When a spark is applied, methane gas reacts with oxygen in the air to produce a blue flame. The flame gets larger as the oxygen valve is turned to allow more oxygen to mix with methane. Different masses of baking soda are placed inside three balloons of the same size. Three grams of baking soda is added to the first balloon, four grams is added to the second balloon, and five grams is added to the third balloon. Each balloon is placed on top of a bottle containing 200mL of vinegar, with care that no baking soda is lost from the balloons. When the baking soda inside each balloon drops into the vinegar, the balloons eventually inflate. The balloon containing 4g of baking soda inflates to a larger size than the balloon containing 3g. However, the balloon containing 5g of baking soda inflates to the same size as the balloon containing 4g. 		
	 When colorless solutions of sodium sulfate (Na₂SO₄) and strontium nitrate (Sr(NO₃)2) are mixed, a white solid forms. Equal masses of the white solid are recovered when 30.0 mL of 0.10 M Na₂SO₄ solution is added to 70.0 mL of 0.20 M Sr(NO₃)₂ solution and when 30.0 mL o 0.20 M Na₂SO₄ solution is added to 70.0 ml of 0.20 M Sr(NO₃)₂ solution. 		

	This Perf	ormance Expectation and associated Evidence Statements support the following Task Demands.
		Task Demands
1	. Make sii involvec reaction	mple calculations using given data to estimate, calculate, and/or predict the masses of substances I in a chemical reaction. These calculations may include the optimal ratio of reactants for a chemical , mass of the limiting reactant, the mass of the excess reactant, theoretical yield, and actual yield.
2	. Illustrate chemica product	e, graph, describe, and/or identify the proportional relationships between substances involved in a I reaction that can be used to calculate or estimate the masses of atoms in the reactants and the s of that chemical reaction.
3	. Describe substan	e and predict simple chemical reactions in terms of mass, using proportional relationships among the ces involved in a chemical reaction.
4	. Compile matter v	, from given information, the particular data needed for a particular inference about the amounts of vithin a chemical system. This can include sorting out the relevant data from the given information.

Performance	HS-PS1-8			
Expectation	Develop models to illustrate the changes in the composition of the nucleus of the atom and the			
	energy released during the processes of fission, fusion, and radioactive decay.			
Dimensions	Developing and Using	PS1.C: Nuclear Processes	Energy and Matter	
	Models	 Nuclear processes, including fusion, 	• In nuclear processes, atoms	
	 Develop a model based 	fission, and radioactive decays of	are not conserved, but the	
	on evidence to illustrate	unstable nuclei, involve release or	total number of protons	
	the relationships	absorption of energy. The total	plus neutrons is conserved.	
	between systems or	number of neutrons plus protons		
	between components of	does not change in any nuclear		
	a system.	process.		
Clarifications	Clarification Statements			
and Content	 Emphasis is on simplicity 	le qualitative models, such as pictures or	r diagrams, and on the scale of	
Limits	energy released in n	uclear processes relative to other kinds	of transformations.	
	Content Limits			
	 Assessment does no 	t include quantitative calculation of ener	rgy released. Assessment is	
	limited to alpha, bet	a, and gamma radioactive decays.		
Science	Absorption transformation	nuclear reaction nucleus decay rate fi	ssion fusion neutron nuclear	
Vocabulary	mass, unstable, half-life, radioactive, radiation, alpha particle, alpha decay, beta particle, beta emission, gamma radiation, atomic number, atomic mass, proton, radioactive decay			
Students are				
Expected to				
Know				
Science	Nucleon(s), radioisotopes, positron, positron emission, electron capture, radioactive series, nuclear			
Vocabulary	disintegration series, magic numbers, nuclear transmutations, particle accelerators, transuranium			
Students are	elements, radiometric dating, becquerel (Bq) unit, curie (Ci) unit, Geiger counter, radiotracer,			
Not Expected	critical mass, supercritical mass, nuclear reactor, ionizing radiation, nonionizing radiation, target			
to know	nucleus, pomparding particle, nuclear process, nuclear stability, particle emission, rate of nuclear			
decay, spontaneous nuclear reaction				
Context/	Some example phenomena f	for HS-PS1-8:		
Phenomena	Rocks from the Tuna	Creek area of the Grand Canyon were t	ested and found to contain less	
	lead (Pb) and more u	uranium (U) than rocks from the Elves Ch	nasm area of the Grand	
	Canyon.			
	A brand new nuclear	r fuel rod containing 3% U-235 was used	in a nuclear reactor in New	
	Jersey for 18 months	s. When it was taken out the reactor, it v	vas found to contain 0.8% U-	
	Scientists in Dubna	Pussia, after using a beavy ion accelerate	ar to smash barkelium and	
	 Sciencists in Dubna, Russia, after using a neavy ion accelerator to smash berkelium and detected atoms of elements 115 and 112 along with alpha particles 			
This Performance Expectation and associated Evidence Statements support the following Task Demands.				
Task Demands				
1. Select or	1. Select or identify from a collection of components, including distractors, the components needed to model			
			, מווטרטו דמטוטמננועב טבנמץ.	
2. Identify	missing components, relation	ships, or other limitations of the model.		

- Describe, select, or identify the relationships among components of the nucleus and/or nuclear processes that explains the release or absorption of energy and/or the conservation of protons and neutrons.
 Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing a release or absorption of energy from a nuclear process. This <u>does not</u> include labeling an existing diagram.
 - 5. Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.

Performance	HS-PS2-1			
Expectation	Analyze data to support the claim that Newton's second law of motion describes the mathematical			
	relationship among the net force on a macroscopic object, its mass, and its acceleration.			
Dimensions	Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect	
	 Analyze data using tools, 	 Newton's second law 	 Empirical evidence is 	
	technologies, and/or models (e.g.,	accurately predicts	required to differentiate	
	computational, mathematical) in	changes in the motion of	between cause and	
	order to make valid and reliable	macroscopic objects.	correlation and make claims	
	scientific claims or determine an		about specific causes and	
	optimal design solution.		effects.	
Clarifications	Clarification Statements			
and Content	Examples of data could includ	e tables or graphs of position	or velocity as a function of time	
Limits	for objects subject to a net un	balanced force, such as a falli	ng object, an object rolling	
	down a ramp, or a moving obj	ect being pulled by a constan	t force.	
	Content Limits	limancional mation and to m	arracaania ahiaata maying at	
	non-relativistic speeds.		acroscopic objects moving at	
	 Stating the law or naming the 	law is not part of this PE.		
		•		
Science	Velocity, acceleration, net force, friction	on, air resistance, impulse, ve	ctors, slope, y-intercept	
Vocabulary				
Students are				
Expected to				
Know	lerk terminal velocity			
Vocabulary				
Students are				
Not Expected				
to Know				
	Phe	enomena		
Context/	The phenomenon for these PEs are th	e given data. Phenomena sho	ould describe the data set(s) to	
Phenomena	be given in terms of patterns or relation	onships to be found in the dat	a, and the columns and rows of	
	a hypothetical table presenting the da	ta, even if the presentation is	not tabular. The description of	
	the phenomenon should describe the	presentation format of the da	ata (e.g., maps, tables, graphs,	
	Some example phenomena for HS-PS2	2-1:		
	Force is removed from two ve	hicles' accelerator pedals. The	e vehicles' positions over time	
	are given.			
	A water tank railcar is pulled b	by a train engine at constant s	peed and develops a leak	
	allowing water to escape. The	position and velocities of the	water tank and train over time	
	are given.			
	type of engine. The position of	f each rocket over time is give	nouer rocket using the same	
	A falling skydiver's velocity inc	reases for several minutes an	nd then reaches a maximum	
	speed. The velocity of the skydiver over time is given.			
		0 -		
This Performance Expectation and associated Evidence Statements support the following Task Demands.				

	Task Demands
1.	Organize and/or arrange (e.g., using illustrations and/or labels), make calculations, or summarize data to highlight trends, patterns, or correlations.
2.	Generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends or relationships in the motion of a macroscopic object. This may include sorting out distractors.
3.	Construct, state, or select a claim or propose a design solution based on the relationships identified in the data.
4.	Use relationships identified in the data to predict the motion of and changes in the motion of macroscopic objects.
5.	Identify patterns or evidence in the data that supports inferences about the motion of and changes in the motion of macroscopic objects.

Performance	HS-PS2-2		
Expectation	Use mathematical representations to support the claim that the total momentum of a system of		
	objects is conserved w	hen there is no net force on the system	
Dimensions	Using Mathematics	PS2.A: Forces and Motion	Systems and System
	and Computational	• Momentum is defined for a particular frame of	Models
	Thinking	reference; it is the mass times the velocity of	 When investigating or
	 Use mathematical 	the object.	describing a system,
	representations of	• If a system interacts with objects outside itself,	the boundaries and
	phenomena to	the total momentum of the system can	initial conditions of the
	describe	change; however, any such change is balanced	system need to be
	explanations	by changes in the momentum of objects	defined.
		outside the system.	
Clarifications	Clarification Statemer	its	
and Content	 Emphasis is or 	the quantitative conservation of momentum in int	eractions and the
Limits	qualitative me	aning of this principle	
	 Students shou 	Id not be deriving formulas but can be using and ma	anipulating them
	Contant Limits		
	Assessment is	limited to systems of no more than two macroscon	ic hodies moving in one
	dimension.		
	<u>Students do n</u>	ot need to know:	
	 How to us 	e a derivation to show that momentum is conserve	d only when there is no net
	force.		
	 How to de 	rive formulas regarding conservation of momentun	า.
	 How to res 	solve vectors and apply the understanding that mor	mentum must be
	conserved	in all directions.	
	• Newton's	Laws by name	
Science	Friction, transfer, dece	leration, frame of reference, net force, acceleration	n, velocity, internal,
Vocabulary	external, conversion, o	losed system, Newton's Second Law, collision, vect	or
Students are			
Expected to			
Know			
Science	Elastic collision, inelas	tic collision, inertial frame of reference	
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenor	nena for HS-PS2-2:	
Phenomena	 A pool player l 	nits a cue ball towards a stationary 8-ball. The cue b	all collides with the 8-ball,
	causing the 8-	ball to move. The 8-ball slows down until it comes t	o a rest 5 seconds after the
	collision.		
	Two pool balls	collide with each other and two soccer balls collide	e with each other. After the
	collision, the s	occer balls come to a stop quicker than the pool ba	lls.
	A pool player	hits a cue ball towards a stationary 8-ball. The cue b	all collides with the 8-ball.
	2 seconds after	r the collision	an the velocity of the 8-ball

	 Two hockey pucks collide during an ice hockey practice. A player realizes that the two pucks take a long time to come to rest on the ice. After practice, he makes two street hockey pucks collide on pavement. The pucks come to a stop more quickly than the ones on the ice did. 			
This Perf	ormance Expectation and associated Evidence Statements support the following Task Demands.			
Task Demands				
1. Make si momen	mple calculations using given data to calculate or estimate the total momentum in the system OR the tum of individual objects within the system.			
2. Illustrat momen	e, graph, or identify relevant features or data that can be used to calculate or estimate the total tum in the system OR the momentum of individual objects within the system.			
3. Calculat one or	te or estimate properties or relationships between momentum and other forces based on data from more sources.			
 Identify force ar from th 	data or compile from given information, the information needed to support inferences about net nd/or how momentum is conserved within a system. This can include sorting out the relevant data e given information.			

Performance	HS-PS2-3				
Expectation	Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the				
	force on a macroscopic object during a collision.				
Dimensions	Constructing	PS2.A: Forces and Motion	Cause and		
	Explanations		Effect		
	and Designing	 If a system interacts with objects outside itself, the total 	 Systems can 		
	Solutions	momentum of the system can change; however, any such	be designed to		
	 Apply scientific 	change is balanced by changes in the momentum of	cause a		
	ideas to solve a	objects outside the system.	desired effect.		
	design				
	problem,				
	taking into	ETS1.A: Defining and Delimiting an Engineering Problem			
	account				
	possible	Criteria and constraints also include satisfying any			
	offocts	requirements set by society, such as taking issues of risk			
	enects.	the extent possible and stated in such a way that one can			
		tell if a given design meets them (secondary)			
		ter in a given design meets them. (Secondary)			
		ETS1.C: Optimizing the Design Solution			
		 Criteria may need to be broken down into simpler ones 			
		that can be approached systematically, and decisions			
		about the priority of certain criteria over others (trade-			
		offs) may be needed. (secondary)			
Clauifications	Clauifiantiau Chata				
		ments	and of the device		
And Content Examples of evaluation and refinement could include determinin		or evaluation and remement could include determining the suc	cess of the device		
Linits		of a device could include a football beliet or a parachute	e it.		
	Examples				
	Content Limits				
	Assessment is limited to qualitative evaluations and/or algebraic manipulations				
Science	Exert, acceleration, deceleration, impact, inertia, Newton's First law, Newton's Second Law,				
Vocabulary	Newton's Third Law of Motion, impact, drag, velocity, qualitative, criteria, theoretical model,				
Students are	optimal, deformation, impulse, tradeoff				
Expected to					
Know					
Vocabulary		ics, consideration, representation, aspect, specification, childal,	compressionity		
Students are					
Not Expected					
to Know					
	l	Phenomena			
Context/	Engineering stand	ards are built around meaningful design problems rather than p	henomena. For		
Phenomena	this performance expectation, the design problem and solutions replace phenomena.				
	Some example des	sign problems for HS-PS2-3:			

	 Bikers need to be both protected and have total visibility when riding. Design a helmet that protects the biker from collisions while maintaining awareness for his surroundings. Phone screens can be easily broken if dropped on the ground. Design a phone case that protects the phone from collisions while maintaining functionality. Design a material that can be implemented on a pool table, athletic field turf (fake grass), or miniature golf green to prevent wear and tear on the playing surface. Design an instrument case so that the instrument will still be in good condition even if the case is subject to being dropped or rolled around. 			
This Performance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands			
 Identify of the given 	r assemble from a collection, including distractors, the relevant aspects of the problem, that with design solutions, if implemented, will resolve/improve the device by minimizing impact force.			
 Using the given information, select or identify the criteria against which the device or solution should be judged. 				
3. Using given data, propose/illustrate/assemble a potential device (prototype) or solution in order to minimize impact forces.				
4. Using give	n information, select or identify constraints that the device or solution must meet.			
5. Using a sin testing mo	nulator, test a proposed prototype and evaluate the outcomes, potentially including proposing and odifications to the prototype.			
Performance	HS-PS2-4			
----------------	--	--	--	
Expectation	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe			
	and predict the gravitational and electrostatic forces between objects.			
Dimensions	Using Mathematics	PS2.B: Types of Interactions	Patterns	
	and Computational	 Newton's law of universal gravitation and 	 Different patterns 	
	Thinking	Coulomb's law provide the mathematical models	may be observed at	
	 Use mathematical 	to describe and predict the effects of gravitational	each of the scales at	
	representations of	and electrostatic forces between distant objects.	which a system is	
	phenomena to	 Forces at a distance are explained by fields 	studied and can	
	describe	(gravitational, electric, and magnetic) permeating	provide evidence for	
	explanations.	space that can transfer energy through space.	causality in	
		Magnets or electric currents cause magnetic	explanations of	
		fields; electric charges or changing magnetic fields	pnenomena.	
		cause electric fields.		
Clarifications	Clarification Stateme	nts		
and Content	Emphasis is o	on both quantitative and conceptual descriptions of a	gravitational and electric	
Limits	fields.			
	Content Limits			
	 Assessment is 	limited to systems with two objects.		
	Mathematical	models can involve a range of linear and nonlin	near functions including	
	trigonometric functions, exponentials and logarithms, and computational tools for statistical			
	dialysis to dia	alyze, represent, and model data.		
Science	attraction, charge, cor	nductor, electric charge, induced electric current, electi	ric field. electromotive	
Vocabulary	force, electromagnetic field, electromagnet, frequency, induction, insulator, magnetic field, magnetic			
Students are	field lines, magnetic force, permanent magnet, polarity, repulsion, resistance, voltage, battery,			
Expected to	direction, magnitude,	ampere, charged particle, volts, right-hand rule, tesla,	vectors,	
Know				
Science	electric potential, elec	tromotive force, permeating, quantum property, Lapla	ce force,	
Vocabulary	electrodynamics, mag	netic dipole, electrostatic, general relativity, Ampere's	Law, Coulomb force,	
Students are	Lorentz force			
to Know				
		Phenomena		
Context/	Some example pheno	mena for HS-PS2-4:		
Phenomena	A person weig	the 150.00 pounds at sea level. At the top of Mount Eve	erest, the same person	
	weighs 149.25	5 pounds.	, ,	
	When an unch	narged sphere is brought near another stationary unch	arged sphere, the	
	stationary und	charged sphere does not move. When a charged sphere	e is brought near a	
	stationary und	charged sphere, the stationary uncharged sphere alway	vs moves towards the	
	charged spher	e.		
	Ine constant (proportionality)	or proportionality in Coulomb's Law is 10 ²² times greate	er than the constant of	
	proportionalit	y in Newton's Law of Gravitation. However, the force C	or gravity on objects on	
1	Farth is usuall	V much greater than the force everted by magnete		
	Earth is usuall	y much greater than the force exerted by magnets.		
This Perf	Earth is usuall	y much greater than the force exerted by magnets.	ng Task Demands.	

8.	Make simple calculations using given data to calculate or estimate the gravitational or electrostatic forces between objects.
9.	Illustrate, graph, or identify relevant features or data that can be used to calculate or estimate the gravitational or electrostatic forces between objects.
10	 Calculate or estimate gravitational or electrostatic properties/relationships based on data from one or more sources.
11	. Compile, from given information, the particular data needed for a particular inference about the gravitational or electrostatic forces between objects. This can include sorting out the relevant data from the given information.

Performance	HS-PS2-5		
Expectation	Plan and conduct an investigation to provide evidence that an electric current can produce a		
	magnetic field and that a changin	g magnetic field can produce an electric c	current.
Dimensions	Planning and Carrying Out	PS2.B: Types of Interactions	Cause and Effect
	 Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. 	 Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary) 	• Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Clarifications	Content Limits		
and Content	Assessment is limited to	designing and conducting investigations	with provided materials
Limits	and tools.		
	Coulomb Law is provided	in the stimulus if student is required to n	nake calculations.
Science Vocabulary Students are	conductor, electric charge, induced electric current, electromotive force, electromagnetic field, electromagnet, induction, insulator, magnetic field, magnetic field lines, permanent magnet, polarity, resistance, voltage, magnitude, ampere, charged particle, volts, right-hand rule, tesla,		
Expected to Know	vectors,		
Science	electric potential, electromotive f	orce, permeating, quantum property, Lap	place force,
Vocabulary	electrodynamics, magnetic dipole, electrostatic, general relativity, Ampere's Law, Coulomb force,		
Students are	Lorentz force		
to Know			
	l	Phenomena	
Context/	Some example phenomena for HS	S-P\$2-5.	
Phenomena	 Paperclips on a table are picked up by a wire when both ends of the wire are attached to a battery. 		e wire are attached to a
	When an electric current	flows through a coil near a strong magne	t, the coil rotates.
	The light bulb in a closed	circuit turns on when a magnet moves ne	ear the wire in the circuit.
	A wind turbine built with	a neodymium magnet produces more ele	ectricity than a wind
	turbine built with a ferrite	e magnet.	
This Perfo	mance Expectation and associated	d Evidence Statements support the follow	ing Task Demands
		Task Demands	no rask benands.
1. Identify	from a list, including distractors,	the materials/tools/steps needed for an	investigation to provide
evidenc	e that an electric current produces	s a magnetic field or that a changing ma	agnetic field produces an
electric	current.		

2.	Identify the outcome data that should be collected in an investigation to provide evidence that an electric current produces a magnetic field or that a changing magnetic field produces an electric current.
3.	Evaluate the sufficiency and limitations of data collected to explain the phenomenon.
4.	Make and/or record observations about the magnetic field created by an electric current or the electric current created by a changing magnetic field.
5.	Analyze, manipulate, interpret and/or communicate the data from an investigation to provide evidence that an electric current produces a magnetic field or that a changing magnetic field produces an electric current.
6.	Explain or describe the causal processes that lead to the observed data.
7.	Select, describe, or illustrate a prediction made by applying the findings from an investigation about electric currents and magnetic fields.

Performance	HS-PS2-6		
Expectation	Communicate scientific and technical information about why the molecular-level structure is		
	important in the functioning of designed materials.		
Dimensions	Obtaining, Evaluating, and	PS1.A: Structure and Properties of	Structure and Function
	Communicating	Matter	 Investigating or designing
	Information	 The structure and properties of 	new systems or structures
	Communicate scientific	matter at the bulk scale are	requires a detailed
	information (e.g. about	determined by electrical forces	examination of the
	the process of	within and between atoms.	properties of different
	development and the	(secondary)	materials, the structures of
	design and performance		different components, and
	of a proposed process or	PS2.B: Types of Interactions	connections of components
	system) in multiple	• Attraction and repulsion between	to reveal its function and/or
	formats (including orally,	electric charges at the atomic scale	solve a problem.
	graphically, textually,	explain the structure, properties, ad	
	and mathematically).	transformations of matter, as well	
		as the contact forces between	
		material objects.	
Clarifications	Clarification Statements		I
and Content	Emphasis is on the a	ttractive and repulsive forces that deter	mine the functioning of the
Limits	material.		
	Examples could inclu	ude why electrically conductive materials	are often made of metal.
	flexible but durable materials are made up of long chained molecules, and pharmaceuticals		
	are designed to interact with specific receptors.		
	Assessment is limited to provided molecular structures of specific designed materials.		
	Content Limits		
	<u>Students do not nee</u>	d to know: specific molecular structures	; specific names of synthetic
	materials such as vir	ıyl, nylon, etc.	
	N A		
Science	Macroscopic, microscopic, e	lectrical conductivity, long chained mole	cules, contact force, electron
Students are	reactivity intermolocular for	reas charge conductor electric charge	insulator, normanont magnet
Expected to	polarity resistance charged	narticle ionic bond covalent bond byd	rogen hond ductile malleable
Know	friction	particle, ionic bond, covalent bond, nyd	rogen bond, ductile, maneable,
Science	electric potential, electromo	tive force, permeating, quantum proper	ty Laplace force
Vocabulary	electrodynamics, magnetic o	lipole, electrostatic, general relativity. Ar	mpere's Law. Coulomb force.
Students are	Lorentz force, Van der Waals	s forces, organic molecules	, ,
Not Expected			
to Know			
	•	Phenomena	
Context/	Some example phenomena	for HS-PS2-6:	
Phenomena	Zinc oxide was disso	lved in water and the resulting solution v	was very difficult to stir. Upon
	the addition of a clea	ar, amber colored liquid, the solution be	came much thinner and easier to
	stir.		
	Water was spilled or	n two shirts. One shirt absorbed the wate	er very quickly, leaving a large
	wet spot. On the oth	ner shirt, the water formed tiny spheres a	and bounced off, leaving the
	shirt dry.		

	 A sample of cotton fabric was dyed with two different kinds of dye and then was washed several times to determine how well the dye stayed in the fabric. One dye faded over time, the other did not. Food cooked in a bronze-colored pot cooked quickly and evenly. Food cooked in a silver-colored pot took longer and was not evenly cooked.
Th	is Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Ar ch ar 2. Id	nalyze and interpret scientific evidence from multiple scientific/technical sources including text, diagrams, narts, symbols, mathematical representations that provide evidence that electrostatic forces on the atomic nd molecular scale result in contact forces (e.g., friction, normal forces, stickiness) on the macroscopic scale.* entify relationships or patterns in scientific evidence to describe how electrostatic forces are related to
pr	operties of designed materials.
3. Id in	entify and communicate evidence for how the structure and properties of matter and the types of teractions of matter at the atomic scale determine its function.
4. Sy ev	inthesize an explanation for the function and properties of designed materials that incorporates the scientific vidence from multiple sources.*
5. Ev	valuate the validity, credibility, accuracy, relevancy and/or possible bias of scientific/technical sources.

Performance	HS-PS3-1		
Expectation	Create a computational model to calculate the change in energy of one component in a system		
	when the change in energy of the other component(s) and energy flows in and out of the system are		
	known.		
Dimensions	Using Mathematics and Computational Thinking • Create a computational model or simulation of a phenomenon, designed device, process or system	 PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g., relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system. 	Systems and System Models • Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models.
Clarifications and Content Limits	 Clarification Statements Emphasis is on explaining the meaning of mathematical expressions used in the model. Content Limits Assessment is limited to: Basic algebraic expressions or computations Systems of two or three components Thermal energy, kinetic energy, and/or the energies in gravitational, magnetic and electric fields. Students do not need to know: detailed understanding of circuits or thermodynamics 		
Science Vocabulary Students are Expected to Know	Mechanical energy, electrical current, h	, potential energy, conversion, kinetic energy, conduction, ele leat radiation, insulate, resistor, Volt, Amp, Ohm's Law	ctrical circuit,
Science Vocabulary Students are Not Expected to Know	Entropy, second lav inductance, inducto	w of thermodynamics, thermodynamics, Stirling cycle, Carnot or, Faradays law	cycle, capacitor,

	Phenomena
Context/ Phenomena	 Some example phenomena for HS-PS3-1: A block is attached to a spring and laid down on a table. The spring is stretched by pulling the block a certain distance. The spring is then released. As the block oscillates back and forth, the amplitude of each successive oscillation gets smaller until the block stops moving. A light bulb is hooked up to an energy source. When a resistor is added in series to the circuit, the brightness of the light bulb dims. Two metal pots are placed on a stove top. Pot 1 has a metal handle while Pot 2 has a rubber handle. The stove is turned on and the pots heat up. After 10 minutes, the handle on Pot 1 is much hotter than the handle on Pot 2. A toy truck is placed at the top of a frictionless ramp. When it travels down the ramp it collides with a stationary toy truck sitting on a horizontal surface (with friction) at the bottom of the ramp. The truck at the bottom of the ramp then begins to move.
This Perfo	ormance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
7. Make si compon	mple calculations using given data to calculate or estimate the amount of energy in certain ents of the system.
8. Illustrate changes how the system.	e, graph, or identify relevant features or data that can be used to calculate or estimate how energy in one component of the system affect the energy changes in another component of the system OR flow of energy into and out of the system affects the energy change of each component within the
9. Calculat data fro	e or estimate properties for, or the relationships between, each component of the system based on m one or more sources.
10. Compile changes This can	, from given information, the particular data needed for a particular inference about how energy in one component of the system affects the energy changes in another component of the system. include sorting out the relevant data from the given information.

Performance	HS-PS3-2		
Expectation	Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a		
	combination of energy associated with the motions of particles (objects) and energy associated with		
	the relative positions	of particles (objects).	
Dimensions	Developing and Using Models • Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system	 PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light and thermal energy. These relationships are better understood at the 	 Energy and Matter Energy cannot be created or destroyed; it only moves between one place and another place, between objects and/or fields, or between systems.
		microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields movers across space.	
Clarifications and Content Limits	 Clarification Stateme Examples of p The conve The energ Examples of simulations Content Limits Students do r Gravitatio Thermod 	nts ohenomena at the macroscopic scale could include: ersion of kinetic energy to thermal energy gy stored due to position of an object above the Earth gy stored between two electrically-charged plates. models could include diagrams, drawings, description not need to know: ynamics in detail onal fields uclear fusion	ons, and computer
Science Vocabulary Students are Expected to Know	Mechanical energy, p heat conduction, circ	otential energy, kinetic energy, electric field, magnetic field uit, current, heat radiation, work	d, molecular energy,
Science Vocabulary Students are	Entropy, Second Law constant, gravitationa	of Thermodynamics, thermodynamics, root mean velocity, al fields, fusion, fission	, Boltzmann's

Not Expected	
to Know	
	Phenomena
Context/	Some example phenomena for HS-PS3-2:
Phenomena	 Two electrically charged plates, one with a positive charge and one with a negative charge, are placed a certain distance apart. Electron 1 is placed in the middle of the two plates. It accelerates to the positive plate and hits it with a certain velocity. Electron 2 is then placed closer to the negative plate. This electron gains more speed before reaching the positive plate. A gas is placed inside a container and sealed with a piston. The outside of the container is heated up. The piston begins to move upwards. A person rubs their hands together. Afterwards their hands feel warm. A block is attached to a spring and placed on a horizontal table. When the spring is unstretched, the spring and block do not move. When the spring is stretched to a certain distance (x), the block oscillates back and forth.
This Perfo	ormance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Select or needed used to s	r identify from a collection of potential model components, including distractors, the components to model the phenomenon. Components might include equations used to calculate energy or objects set up the experimental model. The model can be a conceptual model (flow chart).
2. Manipul account result in	ate the components of a model to demonstrate how energy at the macroscopic scale can be ed for as a combination of energy associated with the workings of particles at the microscopic scale, the observation of the phenomenon.
 Make pr Prediction with dist 	edictions about the effects of changes in the motion or relative position of objects in the model. ons can be made by manipulating model components, completing illustrations, or selecting from lists tractors.
4. Identify macrosc	missing components, relationships, or other limitations of the model showing how energy at the opic scale is affected by the motion and positioning of particles at the microscopic scale.
5. Describe energy is	e, select, or identify the relationships among components of a model that describes, or explains, how s related to the motion and relative position of objects.

Performance	HS-PS3-3		
Expectation	Design, build and refine a device that works within given constraints to convert one form of energy		
	into another form of energy.		
Dimensions	Constructing	PS3.A: Definitions of Energy	Energy and
	Explanations and	• At the macroscopic scale, energy manifests itself in	Matter
	Designing Solutions	multiple ways such as in motion, sound, light and	 Changes of
	• Design, evaluate,	thermal energy.	energy and
	and/or refine a		matter in a
	solution to a	PS3.D: Energy in Chemical Processes	system can be
	complex real-	 Although energy cannot be destroyed, it can be 	described in
	world problem	converted to less useful forms – For example, to	terms of energy
	based on scientific	thermal energy in the surrounding environment.	and matter
	knowledge,		flows into, out
	student-	ETS1.A: Defining and Delimiting an Engineering Problem	of, and within
	generated sources	 Criteria and constraints also include satisfying any 	that system
	of evidence,	requirements set by society, such as taking issues of risk	
	prioritized criteria	mitigation into account, and they should be quantified	
	and tradeoff	to the extent possible and stated in such a way that one	
	considerations.	can tell if a given design meets them. (secondary)	
Clarifications	Clarification Stateme	ints	
and Content	Emphasis is o	n both qualitative and quantitative evaluations of devices.	
Limits	Examples of c	constraints could include use of renewable energy forms and	efficiency.
	 Examples of c 	devices could include, but are not limited to:	
	Rube	Goldberg devices	
	Wind Turbines		
	• Solar	Cells	
Solar ovens		ovens	
	Generators		
	Content Limits		
	Assessment f	or quantitative evaluations is limited to total output for a giv	en innut
	Assessment in	s limited to devices constructed with materials provided to s	tudents
Science	Electric current, elect	rical energy, electromagnet, magnetic field, electric field, me	echanical energy,
Vocabulary	renewable energy, ge	enerator, wind turbine, Rube Goldberg Device, solar cell, sola	r oven
Students are			
Expected to			
Know			
Science	Torque, entropy, mol	ecular energy, second law of thermodynamics, thermodynar	nics, thermal
Vocabulary	equilibrium, Stirling e	ngine	
Students are			
Not Expected			
to Know			
	1	Phenomena	
Context/	Engineering standard	s are built around meaningful design problems rather than p	henomena. For
Phenomena	this performance exp	ectation, the design problem and solutions replace phenome	ena.
		a problems for US DS2 2	
	Some example design		
	 Use and engli 	ne to generate the most light from an LED.	

 Refine a Stirling Engine to make it run for over 30mins.
 Create a solar oven that will cook an egg in 10mins.
 Refine a solar cell such that it maximizes energy output.
This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
 Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.
 Express or complete a causal chain explaining how the device converts one form of energy into another form of energy. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.
 Using given information, select or identify constraints that the energy converting device or solution must meet.
4. Identify evidence supporting the inference of causation that is expressed in a causal chain.
5. Using given data, propose, illustrate, or assemble a potential energy converting device (prototype) or solution.
 Using a simulator, test a proposed energy converting prototype and evaluate the outcomes, potentially including proposing and testing modifications to the prototype.

Performance	HS-PS3-4			
Expectation	Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two			
	components of different temp	erature are combined within a closed system res	sults in a more	
	uniform energy distribution ar	nong the components in the system (second law	of thermodynamics).	
Dimensions	Planning and Carrying Out	PS3.B: Conservation of Energy and Energy	Systems and	
	Investigations	Transfer	System Models	
	 Plan and conduct an 	• Energy cannot be created or destroyed, but	• When	
	investigation individually	it can be transported from one place to	investigating or	
	and collaboratively to	another and transferred between systems.	describing a	
	produce data to serve as	Uncontrolled systems always evolve toward	system, the	
	the basis for evidence, and	more stable states—that is, toward more	boundaries and	
	in the design: decide on	uniform energy distribution (e.g., water	initial conditions	
	types, how much, and	flows downhill, objects hotter than their	of the system	
	accuracy of data needed to	surrounding environment cool down).	need to be defined	
	produce reliable		and their inputs	
	measurements and		and outputs	
	consider limitations on the	PS3.D: Energy in Chemical Processes	analyzed and	
	precision of the data (e.g.,		described using	
	time) and refine the	Although energy cannot be destroyed, it	models.	
	dosign accordingly	can be converted to less useful forms—for		
	design accordingly.	example, to thermal energy in the		
		surrounding environment.		
Clarifications	Clarification Statements			
and Content	Emphasis is on analyzi	ng data from student investigations and using m	athematical thinking	
Limits	to describe the energy changes both quantitatively and concentually			
	 Examples of investigat 	ions could include mixing liquids at different init	ial temperatures or	
	adding objects at different temperatures to water.			
	Content Limits			
	Assessment is limited	to investigations based on materials and tools pr	ovided to students.	
Science	Specific heat, specific heat cap	acity, kinetic energy, microscopic scale, macrosc	opic scale, molecular	
Vocabulary	energy, heat conduction, heat	radiation, Kelvin, Joules, calorimetry		
Students are				
Expected to				
Know			<u> </u>	
Science	Entropy, root mean velocity, B	oltzmann's constant, gravitational fields, fusion,	fission	
Vocabulary				
Students are				
Not Expected				
	Dhonomons			
Context/	Some example phenomena fo	r HS_PS3_A.		
Phenomena	The temperature of a cap of code decreases when the cap is placed in a container of ice			
i nenomena	 Hot coffee cools down after cold cream is added to the cun 			
	A cooperative cours down after courd creating added to cold code in a global			
	 A scoop of ice cream t 	regins to meit when added to cold soda in a glass	.	

	 A foam cup has 200 grams of room temperature water after 100 grams of hot water are mixed with 100 grams of cold water.
Th	is Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
6. lo ir	dentify, make, plan, and/or record observations/outcome data concerning changes in substances' properties n order to provide evidence of transfer of thermal energy within a closed system.
7. C a c w	Organize, arrange, and/or generate/construct graphs, flowcharts, tables, or assemblages of illustrations nd/or labels of data that document patterns, trends, or correlations among observations and data oncerning transfer of thermal energy within a closed system, and/or the boundaries of a closed system in vhich thermal energy is transferred.
8. D p o	bescribe, analyze, and/or summarize data (e.g., using illustrations and/or labels), to identify/highlight trends, erform calculations and other mathematical analyses, and identify patterns or correlations among bservations and data concerning the transfer of thermal energy within a closed system.
9. U	Ise evidence to identify the boundaries of a closed system in which thermal energy is transferred.
10. lo a	dentify patterns or evidence in the data that support inferences related to the transfer of thermal energy within closed system.

HS-PS3-5				
Develop and use a model of two objects interacting through electric or magnetic fields to illustrate				
the forces between objects and the changes in energy of the objects due to the interaction.				
Developing and Using	PS3.C: Relationship	Cause and Effect		
 Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. 	 Between Energy and Forces When two objects interacting through a field change relative position, the energy stored in the field is changed. 	 Cause and effect relationships can be suggested and predicted for complex natural and human- designed systems by examining what is known about smaller scale mechanisms within the system. 		
Clarification Statements				
Examples of models con happens when two characteristics	uld include: Drawings, diagrams rges of opposite polarity are ne	s, and texts, such as drawings of what ar each other		
Content Limits				
 Assessment is limited to <u>Students do not need t</u> requires in depth know 	o systems containing two object <u>co know:</u> Gauss' Law, Ampere's ledge of the electromagnetism	ts s Law, Faraday's Law or anything that as a unified force.		
Electric current, acceleration, no	et force, newton's second law c	of motion, inertia, velocity, magnet,		
electrical energy, magnetic forc	e, attraction, repulsion, electro	magnet, Coulomb's law,		
electric/magnetic field, potential energy, kinetic energy				
Semiconductor, superconducto	r, torque, Gauss' Law, Ampere s	s Law, Lorentz force, Faraday's Law,		
	Phenomena			
Some example phenomena for	HS-PS3-5:			
 Two magnets are held of 	close together such that they at	tract each other. When the magnets		
are further away from e	each other it is easier to keep th	nem apart.		
 A light bulb connected in the size is the size if the light has a size if the light has a	to a circuit with a battery lights	up. When a stronger battery is placed		
• A magnet rotates when	pub becomes brighter.	pendicular to the magnet When the		
magnet is brought close	to the source of the magnetic	field, it rotates faster.		
A water molecule is place	ced in an electric field. After it i	s released, it begins to rotate. After it		
rotates 90 degrees, it st	ops rotating.	, ,		
This Performance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands			
identify from a collection of pot to model the phenomenon.	ential model components, inclu	iding distractors, the components		
 Assemble or complete, from a collection of potential model components, an illustration or flow chart that is capable of representing how the forces between the objects and the energy of each object changes. This <u>does</u> <u>not</u> include labeling an existing diagram.* 				
	Develop and use a model of two the forces between objects and Developing and Using Models • Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. Clarification Statements • Examples of models con happens when two chain Content Limits • Assessment is limited to <u>Students do not need to</u> requires in depth know Electric current, acceleration, me electrical energy, magnetic force electric/magnetic field, potentia Semiconductor, superconducto Lenz's Law Some example phenomena for • Two magnets are held of are further away from e • A light bulb connected to in the circuit, the light b • A magnet rotates when magnet is brought close • A water molecule is plar rotates 90 degrees, it st Drmance Expectation and associat Fidentify from a collection of pot to model the phenomenon. e or complete, from a collection of of representing how the forces b ide labeling an existing diagram.*	Develop and use a model of two objects interacting through el the forces between objects and the changes in energy of the o Developing and Using Models • Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. Clarification Statements • Examples of models could include: Drawings, diagram happens when two charges of opposite polarity are ne Content Limits • Assessment is limited to systems containing two object requires in depth knowledge of the electromagnetism Electric current, acceleration, net force, newton's second law or electrical energy, magnetic force, attraction, repulsion, electror electric/magnetic field, potential energy, kinetic energy Semiconductor, superconductor, torque, Gauss' Law, Ampere's Lenz's Law Phenomena Some example phenomena for HS-PS3-5: • Two magnets are held close together such that they at are further away from each other it is easier to keep the angentic foles together such that they at are further away from each other it is easier to keep the magnet is brought close to the source of the magnetic • A hight bulb connected to a circuit with a battery lights in the circuit, the light bulb becomes brighter. • A magnet rotates when placed in an electric field perp magnet is brought close to the source of the magnetic fortates 90 degrees, it stops rotatin		

3.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.*
4.	Make predictions about the effects of changes in orientation of objects, distance between objects or size of magnetic and electric charges on the forces between objects and the energy of each object. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.**
5.	Describe, select, or identify the relationships among components of a model that describe or explains the behavior of electric and magnetic fields and/or how that affects the forces between objects and the energy of the objects.
6.	Identify missing components, relationships, or other limitations of the model.

*denotes those task demands which are deemed appropriate for use in stand-alone development **TD 4 can only be used with TD2

Performance	HS-PS4-1			
Expectation	Use mathematical representations to support a claim regarding relationships among the frequency,			
	wavelength, and speed of waves traveling in various media.			
Dimensions	Using Mathematics and	PS4.A: Wave properties	Cause and Effect	
	Computational Thinking	 The wavelength and 	• Empirical evidence is required	
	 Use mathematical 	frequency of a wave are	to differentiate between cause	
	representations of	related to each other by the	and correlation and make	
	phenomena or design	speed of travel of the wave,	claims about specific causes	
	solutions to describe and/or	which depends on the type	and effects.	
	support claims and/or	of wave and the media		
	explanations.	through which it is passing.		
Clarifications	Clarification Statements			
and Content	Examples of data could in	clude electromagnetic radiation	traveling in a vacuum and glass,	
Limits	sound waves traveling th	rough air and water, and seismic	waves traveling through Earth.	
	Contont Limits			
	Assessment is limited to a	alaehraic relationshins and descr	ihing those relationships	
	aualitatively	ngebruic relationships and descri	bing those relationships	
	 Students are not expected 	d to produce equations from mer	norv. like Snell's Law. but the	
	concepts and relationship	s should be assessed.	····, ····	
Science	Simple wave, vacuum, electroma	gnetic radiation, radiation, wave	source, index of refraction, Snell's	
Vocabulary	Law, angle of incidence, angle of	reflection, normal at the point of	incidence, critical angle, interface.	
Students are				
Expected to				
Know				
Science	Clausius–Mossotti relation, dielectric constant, Fermat's principle, phase velocity, permittivity,			
Vocabulary	permeability.			
Students are				
Not Expected				
LO KNOW		Phenomena		
Context/	Some example phenomena for H	S-PS4-1:		
Phenomena	• A person uses their car he	orn in an effort to attract the atte	ention of their friend who is	
	swimming in a pool a sho	rt distance away. The friend hea	rs only muffled noises.	
	A person opens their curt	ains so that the sun shines in the	e window. A diamond in their	
	necklace begins to sparkl	e brightly.		
	• An earthquake occurs in .	Japan. The vibrations are recorde	ed in Brazil, but not in Miami.	
	 A person sees a fish throu 	ugh the glass wall of a rectangula	r fish tank. The person moves and	
	looks through the end of	the tank. The fish appears to be	in a different place.	
This Perfo	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
1 Make as	loulations using given data to sale	Task Demands	and the frequency wavelength	
speed of	f waves, and the media that they tr	avel in.	long the frequency, wavelength,	
2. Illustrate among t	e, graph, or identify relevant featur he frequency, wavelength, speed c	es or data that can be used to ca of waves, and the media that the	lculate or estimate relationships y travel in.	

- 3. Calculate or estimate properties or relationships among the frequency, wavelength, and speed of waves in various media based on data from one or more sources.
- 4. Compile, from given information, the particular data needed for a particular inference about a relationship among the frequency, wavelength, speed of waves, and the media they travel in. This can include sorting out the relevant data from the given information.
- 5. Use quantitative or abstract reasoning to support a claim/explanation about a particular relationship between the velocity, wavelength, and frequency.

Performance	HS-PS4-2				
Expectation	Evaluate questions about the advantages of using a digital transmission and storage of information.				
Dimensions	 Asking Questions and Defining Problems Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. 	 PS4.A: Wave Properties Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. 	 Stability and Change Systems can be designed for greater or lesser stability. 		
Clarifications and Content Limits	 Clarification Statements Examples of advantages stored reliably in compu Disadvantages could inc Content Limits Assessment does not inc 	s could include that digital information is ter memory, transferred easily, and copied lude issues of easy deletion, security, and th clude the specific mechanism of any given d	stable because it can be and shared rapidly. neft. evice.		
Science Vocabulary Students are Expected to Know	Wave pulse, Wi-Fi device, binary suitability, performance, analog, machine, radio wave, USB, bit, b	 capacity, civilization, interdependence, de digital, progress, vacuum, electromagnetic yte, discrete vs. continuous, decode, encod 	gradation, emit, pixel, radiation, computer, e.		
Science Vocabulary Students are Not Expected to Know	Analog jack, HDMI, router, impe	dance, granularity, bandwidth.			
	-	Phenomena			
Context/ Phenomena	 Some example phenomena for H A person uses e-mail to A person is reading some got so much great resea One day in June 2009 a p their favorite television of A person stays in consta phone. 	HS-PS4-2: back up all of their personal data. e science papers that were written in 1905 a rch done before the internet was invented. person noticed that their old analog televisi channel. nt contact with all of their friends and relati	and wonders how people on stopped broadcasting ives using their cell		
This Perfo	This Performance Expectation and associated Evidence Statements support the following Task Demands.				
Task Demands					
 Identify or construct an empirically testable question(s) based on advantages and disadvantages associated with the phenomenon. In addition to other plausible distractors, distractors may include non-testable ("nonscientific") questions. 					
2. Make ar	2. Make and/or record observations about the factors that affect digitally stored or transmitted data.				
 Assemble or complete an illustration, flow chart, or graph based on an empirically testable question that is capable of identifying clear advantages or disadvantages associated with digital transmission and storage of information in the phenomenon. 					

4.	Select or describe conclusions relevant to a question posed and supported by the data, especially inferences about causes and effects.
5.	Make predictions about the phenomenon derived from the questions. Predictions can be made by
	manipulating model components, completing illustrations, or selecting from lists with distractors. Predict
	outcomes when properties are changed, given the inferred cause and effect relationships.

6. Compile, from given information, the particular data needed for a particular inference about the advantages/disadvantages. This can include sorting out the relevant data from the given information.

Performance	HS-PS4-3			
Expectation	Evaluate the claims, evidence and reasoning behind the idea that electromagnetic radiation can be			
	described either by a wave model or a particle model, and that for some situations one model is			
	more useful than the other.			
Dimensions	Engaging in Argument from Evidence • Evaluate the claims, evidence and reasoning behind currently accepted explanations or solutions to determine the merits of arguments	 PS4.A: Wave Properties Waves can add or cancel one another as they cross, depending on their relative phase (i.e. relative position of peaks and troughs of waves), but they emerge unaffected by each other. (Boundary: the discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up). PS4.B: Electromagnetic Radiation Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model 	Systems and System Models Models (e.g., physical, mathematical and computer models) can be used to simulate systems and interactions – including energy, matter and information flows – within and between systems at different scales.	
		explains other features.		
Clarifications	Clarification State	ements		
and Content	Emphasis	is on how experimental evidence supports the claim and h	ow a theory is generally	
Limits	modified	in light of new evidence. Assessment should only test the a	ualitative aspect of the	
	wave mo	del vs. particle model.		
	Examples of a phenomenon could include:			
	Resonance			
	Interference			
	Diffraction			
	Photoelectric Effect			
	Content Limits			
	Assessme	ent does not include using Quantum Theory		
	Assessme	ent does not include in depth calculations		
	<u>Students</u>	<u>do not need to know:</u> Specific types of electromagnetic rad	iation and their	
	waveleng	ths/frequencies		
Science	Interference diff	raction refraction photoelectric effect emission absorptio	n hrightness	
Vocabulary	resonance transr	nission, renaction, photoelectric effect, effission, absorptic	יוו, טווצוונופטט,	
Students are		הואויר אואויר אוקאיר איזאיראייר		
Expected to				
Know				
Science	Doppler effect for	r light (redshift), microwave radiation. ultraviolet radiation.	ionize, infrared	
Vocabularv	radiation, wave-n	particle duality, quantum, quanta, x-rav. gamma ravs. radio	waves, oscillations.	
Students are	electrostatic induction, Planck's equation. Planck's constant. magnetic dipole. electric dipole.			
Not Expected				
to Know				
	Phenomena			
Context/	Some example ph	nenomena for HS-PS4-3:		
Phenomena				

 When light hits a metal, a stream electrons are ejected from the metal. When the color of the light pointed at the metal changes, the kinetic energy of the stream of electrons changes. Light is made to pass through two small slits on a piece of dark construction paper. The light that goes through the slits is then projected on a second piece of dark of construction. A pattern of bright and dark bands is seen on the second piece of dark construction paper. The emission spectra of Hydrogen is completely black but for 4 discrete lines violet, blue, green and red color. A red laser is pointed at a glass prism. The light bends as it goes through the prism. A violet laser is then pointed at the glass prism and the light bends more than the light from the red laser. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Based on the provided data or information, identify the explanation that describes light behaves like a particle and or behaves like a wave. 2. Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. 4. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. 5. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. 6. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only support dby one of the models.		
 This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands Based on the provided data or information, identify the explanation that describes light behaves like a particle and or behaves like a wave. Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence is best explained by only one of these models. Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 		 When light hits a metal, a stream electrons are ejected from the metal. When the color of the light pointed at the metal changes, the kinetic energy of the stream of electrons changes. Light is made to pass through two small slits on a piece of dark construction paper. The light that goes through the slits is then projected on a second piece of dark of construction. A pattern of bright and dark bands is seen on the second piece of dark construction paper. The emission spectra of Hydrogen is completely black but for 4 discrete lines violet, blue, green and red color. A red laser is pointed at a glass prism. The light bends as it goes through the prism. A violet laser is then pointed at the glass prism and the light bends more than the light from the red laser.
Task Demands 1. Based on the provided data or information, identify the explanation that describes light behaves like a particle and or behaves like a wave. 2. Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence is best explained by only one of these models. 3. Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. 4. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. 5. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. 6. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models.		This Performance Expectation and associated Evidence Statements support the following Task Demands
 Based on the provided data or information, identify the explanation that describes light behaves like a particle and or behaves like a wave. Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence is best explained by only one of these models. Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 		Task Domands
 Based on the provided data or information, identify the explanation that describes light behaves like a particle and or behaves like a wave. Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence is best explained by only one of these models. Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 	-	
 Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence is best explained by only one of these models. Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 	1.	Based on the provided data or information, identify the explanation that describes light behaves like a particle and or behaves like a wave.
 Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave. Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 	2.	Identify and/or explain the claims, evidence, and reasoning supporting the explanation that light can behave like a particle or a wave, and why certain evidence is best explained by only one of these models.
 Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave. Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 	3.	Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of how light can behave like a particle or a wave.
 Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle. Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 	4.	Evaluate the strengths and weaknesses of a claim to explain which pieces of evidence support the fact that light behaves as a particle or a wave.
 Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models. 	5.	Analyze and/or interpret evidence and its ability to support the explanation that light can behave as both a wave and a particle.
	6.	Provide and/or evaluate reasoning to support the explanation that light can behave as both a wave and a particle and that some evidence is only supported by one of the models.

Performance	HS-PS4-4			
Expectation	Evaluate the validity and reliability of claims in published materials of the effects that different			
	frequencies of electromagnetic radiation have when absorbed by matter.			
Dimensions	Obtaining, Evaluating, and	PS4.B: Electromagnetic Radiation	Cause and Effect	
	Communicating	• Electromagnetic radiation (e.g.,	• Cause and effect relationships	
	Information	radio, microwaves, light) can be	can be suggested and	
	• Evaluate the validity and	modeled as a wave of changing	predicted for complex natural	
	reliability of multiple	electric and magnetic fields or as	and human designed systems	
	claims that appear in	particles called photons. The wave	by examining what is known	
	scientific and technical	model is useful for explaining	about smaller scale	
	texts or media reports,	many features of electromagnetic	mechanisms within the	
	verifying the data when	radiation, and the particle model	system.	
	possible.	explains other features.		
Clarifications	Clarification Statements			
and Content	Clarification Statements	too that photops associated with differ	ant fraguancias of light have	
Limits	different energies a	nd the damage to living tissue from ele	ctromagnetic radiation depends	
Linnes	on the energy of the	radiation		
	 Examples of publish 	ed materials could include trade books,	magazines, web resources,	
	videos, and other pa	issages that may reflect bias.	. ,	
	Content Limits			
	Assessment is limited to qualitative descriptions.			
Science	Interference, diffraction, refraction, photoelectric effect, emission, absorption, brightness,			
Vocabulary	resonance, photon, visible light, transverse wave, phase, transparent, light scattering, light			
Students are	transmission, radio wave, visible light, electric potential, gamma ray, infrared radiation, ionize,			
Expected to	microwave, ohm, photoelec	tric, ultraviolet,		
Science	Departer offect for light (redchift) microwaye radiation ultraviolet radiation infrared radiation			
Vocabulary	wave-narticle duality quantum quanta x-ray gamma rays oscillations electrostatic induction			
Students are	Planck's equation, Planck's constant, magnetic dipole, electric dipole			
Not Expected	rance s equation, mance s constant, magnetic apole, electric apole			
to Know				
	1	Phenomena		
Context/	Some example phenomena	for HS-PS4-4:		
Phenomena	A student places a g	lass bowl filled with soup in a microway	ve. After a minute in the	
	microwave, the sou	o is hotter than the glass bowl.		
	A lit candle is placed	at one end of a tube filled with carbon	dioxide. A student standing at	
	the other end of the	tube can see the candle's flame. When	looking through a monitor that	
	looks at the infrared radiation emitted by the flame, the student can no longer see the			
	Canule S Tiame.			
	Astronauts aboard the international space station are exposed to a different amount of ultraviolet radiation from the sun than humans on Earth			
	 In 2020, NASA is sen 	ding a rover to Mars with multiple mate	erials on it in order to test	
	whether or not they	can be used as space suits for future N	lars travelers. Orthofabric was	
	chosen to be sent or	n the mission, while Spectra was not.		
This Perfe	ormance Expectation and asso	ciated Evidence Statements support the	e following Task Demands.	

	Task Demands
1.	Analyze and/or interpret scientific evidence from multiple scientific/technical sources including text, diagrams, charts, symbols, mathematical representations that provide evidence of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.*
2.	Identify relationships or patterns in scientific evidence to describe how different frequencies of electromagnetic radiation effect matter when absorbed.
3.	Illustrate, graph, or identify relevant features or data that can be used to communicate information about the effect that different frequencies of electromagnetic radiation have on matter when it is absorbed.
4.	Synthesize an explanation for the effects of electromagnetic radiation on matter when absorbed that incorporates the scientific evidence from multiple sources.*
5.	Evaluate the validity, credibility, accuracy, relevancy and/or possible bias of scientific/technical sources.
6.	Identify the cause and effect reasoning in a claim from the sources, including the extrapolations to larger scales from cause and effect relationships of mechanisms at small scales (e.g. extrapolating from the effect of a particular wavelength of radiation on a single cell to the effect of that wavelength on the entire organism).

Performance	HS-PS4-5			
Expectation	Communicate technical information how some technological devices use the principles of wave			
	behavior and wave interaction with matter to transmit and capture information and energy.			
Dimensions	Obtaining,	PS3.D: Energy in Chemical Processes	Cause and Effect	
	Evaluating, and	 Solar cells are human-made devices that likewise 	 Systems can be 	
	Communicating	capture the sun's energy and produce electrical	designed to	
	Information	energy. (secondary)	cause a desired	
	Communicate		effect.	
	technical	PS4.A: Wave Properties		
	information or ideas	• Information can be digitalized (e.g., a picture stored		
	(e.g., about	as the values of an array of pixels); in this form, it can		
	the process of	over long distances as a series of wave pulses		
	development and	over long distances as a series of wave pulses.		
	the design and	PS4 B: Electromagnetic Radiation		
	performance of a	Photoelectric materials emit electrons when they		
	proposed process or	absorb light of a high enough frequency		
	system) in multiple	aborb light of a high choagi frequency.		
	formats (including	PS4.C: Information Technologies		
	orally, graphically,	• Multiple technologies based on the understanding of		
	textually, and	waves and their interactions with matter are part of		
	mathematically).	everyday experiences in the modern world (e.g.,		
		medical imaging, communications, scanners) and in		
		scientific research. They are essential tools for		
		producing, transmitting, and capturing signals and		
		for storing and interpreting the information		
		contained in them.		
clarifications		S	atriaity, madical	
Limits	 Examples could imaging and co 	Include solar cells capturing light and converting it to ele	ctricity, medical	
Linnes		initialications technology.		
	Content Limits			
	Assessments ar	e limited to qualitative information.		
	 Assessment do 	es not include band theory		
		es not melade sand theory.		
Science	refraction, reflection, i	nfrared, electromagnetic spectrum, constructive wave, de	estructive wave,	
Vocabulary	restoring, periodic mot	ion, mechanical wave, interference, velocity, diffraction, s	tanding wave,	
Students are	nodes, angle of inciden	ce, rarefaction, superposition, medium, longitudinal wave	e, transverse wave,	
Expected to	standing wave, ultrasou	und, dispersion, intensity, prism, resonance, radar, sonar,	virtual image, real	
Know	image			
Science	Constructive interferen	ce, destructive interference, light ray, total internal reflec	tion	
Vocabulary				
Students are				
Not Expected				
to Know		Dhanaana		
Context/	Engineering Standards	Phenomena	nhanamana Far	
Context/	this performance even	are pullt around meaningful design problems rather than	phenomena. For	
FILEHUITIEITa				

	 Some example design problems and/or solutions for HS-PS4-5: When using light detection and ranging (LiDAR) over a forested area the light reflects off multiple surfaces and affects the accuracy of elevation models. Solar cells only capture about 20% of the energy from the sun. Marine radar is mounted to the front of ships used for collision avoidance. Occasionally the radar can distort the coast line and report a straight coastline when it is curved. Water reflects radar, blanking out entire regions of radar screens.
Thi	s Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Ar ch ab	nalyze and interpret scientific evidence from multiple scientific/technical sources including text, diagrams, parts, symbols, mathematical representations that provide evidence of how devices use wave behavior, the posorption of photons, and the production of electrons to solve problems.
2. Id an	entify relationships or patterns in scientific evidence to describe how waves are used to produce, transmit, ad capture signals in electronic devices.
3. Illi	ustrate, graph, or identify relevant features or data that can be used to communicate wave information and
4. Sy sc	nthesize an explanation for the function and properties of designed materials that incorporates the ientific evidence from multiple sources.
5. Ev	valuate the validity, credibility, accuracy, relevancy and/or possible bias of scientific/technical sources.

Performance	HS-LS1-1		
Expectation	Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.		
Dimensions	 Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 	 LS1.A: Structure and Function Systems of specialized cells within organisms help them perform the essential functions of life. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. 	Structure and Function • Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and the connections of these components in order to solve problems.
Clarifications and Content Limits	 Content Limits Assessment does not include specific protein structures and 	e identification of specific cell or tissue ad functions, or the biochemistry of p	e types, whole body systems, protein synthesis.
Science Vocabulary Students are Expected to Know	Nucleus, chromosome, DNA, nucleat thymine, deoxyribose, phosphate, h	ed cell, transcription, double helix, ad ydrogen bond, nucleotide base, mRN/	denine, guanine, cytosine, A, amino acid, translation
Science Vocabulary Students are Not Expected to Know	primary, secondary, tertiary protein structure, tRNA, ribosome.		
		Phenomena	
 Context/ Phenomena Sample phenomena for HS-LS1-1: Sweat glands cool the body by releasing sweat onto the skin's surface. A protein transports salt to help carry the water to the skin's surface. In some individuals, the salt is not reabsorbed and is left on the skin. When a blood vessel is cut, several proteins act to form a blood clot. This blood clot helps to stop the loss of blood from the body. In some individuals, when a blood vessel is cut, a blood clot does not form. During cell division, a copy of DNA in the cell is made. Sometimes mistakes are made in the DNA copy that are corrected by specific proteins. In some cells, when those mistakes in the DNA are not corrected, uncontrolled cellular division results. After a person eats, sugars from food are absorbed from the bloodstream into the body's cells. Insulin—a polypeptide hormone—allows those cells to absorb glucose from the bloodstream. In some individuals, sugars are not absorbed into the body's cells and are left in the bloodstream. 			
This Perf	ormance Expectation and associated E	vidence Statements support the follo	owing Task Demands.
	T,	ask Demands	

9.	Describe the cause and effect relationship between a DNA sequence and the structure/function of a protein. This may include indicating the directions of causality in a model or completing a cause and effect chain.
10	 Describe, identify, or select evidence that supports or contradicts a claim about the role of DNA in causing the phenomenon. The evidence may be obtained from valid source(s) or might be generated by students using a simulation.
1:	 Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes to a DNA sequence in protein structure and function. Predictions may be selected from a collection of possibilities, including distractors, or they might be illustrated or described in writing.
12	 Use evidence to construct an explanation of how protein structure and subsequent function depend on a DNA sequence.
13	3. Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses.

Performance	HS-LS1-2		
Expectation	Develop and use a model to illustrate the hierarchical organization of interacting systems that		
	provide specific functions	within multicellular organisms.	
Dimensions	 Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. 	 LS1.A: Structure and Function Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. 	 Systems and System Models Models (e.g., physical, mathematical, and computer models) can be used to simulate systems and interactions — including energy, matter, and information flows — within and between systems at different scales.
Clarifications	Clarification Statements		
and Content Limits	 Emphasis is on fu delivery, and orga interacting syster smooth muscle to system. Content Limits Assessment does reaction level (e.ş Assessment does functions. 	unctions at the organism system level such as nutrient uptake, water anism movement in response to neural stimuli. An example of an m could be an artery depending on the proper function of elastic tissue and o regulate and deliver the proper amount of blood within the circulatory s not include interactions and functions at the molecular or chemical g., hydrolysis, oxidation, reduction, etc.).	
Science	Circulatory, respiratory, d	ligestive excretory nervous imm	nune integumentary skeletal muscle
Vocabulary Students Are Expected to Know	reproductive, external sti	muli, cell, tissue, organ,	
Science	Synaptic transmission, ne	uron, neurotransmitter, biofeedb	oack, hormonal signaling.
Vocabulary Students Are Not Expected to Know			
	ſ	Phenomena	
Context/ Phenomena	Some example phenomen After a healthy pe When a normal a The area around Skin surface capil	na for HS-LS1-2: erson eats a large meal, both thei dult male exercises, both his brea a person's skin where a small sca laries dilate when a person feels	r blood pressure and heart rate increase. athing rate and heart rate increase. b has formed feels warm to the touch. hot.
This Perfo	ormance Expectation and a	ssociated Evidence Statements su	upport the following Task Demands.
		Task Demands	
 Assemble or complete an illustration or flow chart that is capable of representing how structures in two (or more) body systems interact to carry out normal, necessary bodily functions. This <u>does not</u> include labeling an existing diagram.* 			

2.	Using the developed model, identify and describe the relationships between the structures and their coordinated functions in two (or more) body systems.
3.	Using the developed model, show that interacting systems have a hierarchical organization and provide specific functions within the body at those specific levels or organization.*
4.	Make predictions about, or generate explanations for, how additions/substitutions/removal of certain components in the model can interrupt or change the relationships between those components and, thus, the bodily functions carried out by those structures in two (or more) body systems.
5.	Given models or diagrams of hierarchical organization of interacting systems, identify the components and the mechanism in each level of the hierarchy OR identify the properties of the components that allow those functions to occur.
6.	Identify missing components, relationships, or other limitations of the model.

Performance	HS-LS1-3		
Expectation	Plan and conduct an investigation to provide evidence that feedback mechanisms maintain		
	homeostasis.		
Dimensions	Planning and Carrying Out	LS1.A: Structure and Function	Stability and Change
	Investigations	Feedback mechanisms maintain a	 Feedback (negative
	Plan and conduct an investigation individually and collaboratively to	living system's internal conditions	or positive) can stabilize or destabilize
	produce data to serve as the basis	behaviors allowing it to remain	a system
	for evidence. In the design decide	alive and functional even as	a system.
	on types, how much, and accuracy	external conditions change within	
	of data needed to produce reliable	some range. Feedback	
	measurements and consider	mechanisms can encourage	
	limitations on the precision of the	(through positive feedback) or	
	data (e.g., number of trials, cost,	discourage (negative feedback)	
	risk, time), and refine the design	what is going on inside the living	
	accordingly.	System.	
Clarifications	Clarification Statements	I	
and Content	 Examples of investigations cou 	Id include heart rate response to exerc	cise, stomate response to
Limits	moisture and temperature, and	d root development in response to wat	er levels.
	Content Limits		
	Assessment does not include the second	he cellular processes involved in the fe	edback mechanism.
Science	Equilibrium, steady state, stable state,	balanced state, stimulus, receptor, bio	tic factor, abiotic factor,
Vocabulary	external environment, internal environment, muscle, nerve, hormone, enzyme, chemical regulator,		
Students Are	gland, system, metabolism, disturbance, fluctuation, maintenance, concentration, hibernation,		
Expected to	convection, conduction, radiation, evaporation.		
Science	Effector, osmoregulation, conformer, s	et point, sensor, circadian rhythm, acc	limatization,
Vocabulary	thermoregulation, endothermic, ectoth	nermic, integumentary system, counter	rcurrent exchange,
Students Are	bioenergetics, basal metabolic rate, sta	andard metabolic rate, torpor, poikiloth	nerm, homeotherm,
Not Expected	countercurrent heat exchange.		
to Know		202022	
Context/	Some example phenomena for HS-LS1-	3:	
Phenomena	Fruit ripeness (positive feedbac	ck loop):	
	 In nature, a tree or bus 	sh will suddenly ripen all of its fruits or	vegetables without any
	visible signal.		
	Human blood sugar concentrat	tion (negative feedback loop):	
	• The liver both stores a	nd produces sugar in response to blood	d glucose concentration.
	concentration	either glucagon or insulin in response i	o bioda giucose
	 Sunning lizards (negative feedb) 	pack loop):	
	 Lizards sun on a warm 	rock to regulate body temperature.	
	Thermoregulation in dolphins of	due to counter-current arrangement of	veins around arteries
	(negative feedback loop):		
	• The counter-current sy	rstem minimizes the loss of heat incurre	ed when blood travels to
	the different parts of d	olphins bodies.	

	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Identify the outcome data that should be collected in an investigation to provide evidence that feedback mechanisms maintain homeostasis. This could include measurements and/or identifications of changes in the external environment, the response of the living system, stabilization/destabilization of the system's internal conditions, and/or the number of systems for which data are collected.
2.	Make and/or record observations about the external factors affecting systems interacting to maintain homeostasis, responses of living systems to external conditions, and/or stabilization/destabilization of the systems' internal conditions.*
3.	Identify or describe the relationships, interactions, and/or processes that contribute to and/or participate in the feedback mechanisms maintaining homeostasis that lead to the observed data.
4.	Using the collected data, express or complete a causal chain explaining how the components of (a) mechanism(s) interact in response to a disturbance in equilibrium in order to maintain homeostasis. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.*
5.	Evaluate the sufficiency and limitations of data collected to explain the cause and effect mechanism(s) maintaining homeostasis.

Performance	HS-LS1-4		
Expectation	Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and		
	maintaining complex or	ganisms.	
Dimensions	Developing and Using	LS1.B: Growth and Development of Organisms	Systems and System
	Models	• In multicellular organisms, individual cells	Models
	 Use a model based 	grow and then divide via a process called	• Models (e.g., physical,
	on evidence to	mitosis, thereby allowing the organism to	mathematical,
	illustrate the	grow. The organism begins as a single cell	computer models) can
	relationships	(fertilized egg) that divides successively to	be used to simulate
	between systems or	produce many cells, with each parent cell	systems and
	between	passing identical genetic material (two	interactions—including
	components of a	variants of each chromosome pair) to both	energy, matter, and
	system.	daughter cells. Cellular division and	information
		differentiation produce and maintain a	flows—within and
		complex organism, composed of systems of	between systems at
		tissues and organs that work together to	different scales.
		meet the needs of the whole organism.	
Clauifications		-	
) a nativelude energific construction de selections au	unto uno uno uinotion of the
Limits	 Assessment due stens of mitosis 	s not include specific gene control mechanisms of	
Linnes			
	Content Limits		
	 Students do not 	need to know: Specific names of the stages of mit	osis – Interphase, G1
	phase, S phase,	G2 phase, prophase, metaphase, anaphase, teloph	ase, cytokinesis.
Science	Nucleus, chromosome, s	ister chromatids, sperm cell, egg cell, fertilize, gen	ome, gene, differential
Vocabulary	gene expression, cellular differentiation, cellular division, cytoplasm, daughter cell, parent cell,		
Students Are	somatic cell, cell cycle, homologous, haploid, diploid, DNA.		
Expected to			
Science	Spindle metaphase plat	e cleavage furrow chromatin modification transc	rintion regulation
Vocabulary	initiation, enhancers, tra	inscription factors, post-transcriptional regulation;	noncoding RNAs.
Students Are	cytoplasmic determinan	ts, inductive signals, chiasmata, kinetochore, micro	otubule.
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenome	ena for HS-LS1-4:	
Phenomena	Genomic sequer	ncing of a parent cell and one of its daughter cells r	eveals that both have the
	same genetic ma	akeup.	
	• At the end of an	hour, approximately 30,000 skin cells were shed b	y a person, but a loss of
	mass was not no	ouceable.	
	Ears and noses (Diant colls in a m	an be grown from stem cells in laboratory.	and chanes
		Sor up iongitudinal closs section are unreferit sizes	and shapes.
This Perfe	ormance Expectation and	associated Evidence Statements support the follow	ving Task Demands.
		Task Demands	
1. Assemb	le or complete an illustrati	on or flow chart that is capable of representing ho	w a parent (somatic) cell is
formed	through fertilization, unde	ergoes cellular division, forming daughter cells, and	how those daughter cells

-	
	contain all genetic material from the parent cells but differentiate via gene expression necessary. This does not include labeling an existing diagram.*
2.	Using the model, identify and describe the relationship between the amount and composition of the genetic material that daughter cells receive from parent cells.
3.	Using the model, show that in multicellular organisms, different cell types arise from differential gene expression, not because of dissimilar genetic material within the cell's nucleus.
4.	Use a model of cellular division and differentiation to explain/illustrates the relationships between components that allow multicellular organisms to grow and carry out specific and necessary functions.*
5.	Given models or diagrams of cellular division and differentiation, show that cells form tissues and organs that have specific structures and interact to carry out specific and necessary functions.
6.	Identify missing components, relationships, or other limitations of the model.

Performance	HS-LS1-5		
Expectation	Use a model to illustrate how photosynthesis transforms light energy into stored chemical		
	energy.		
Dimensions Clarifications and Content Limits	 Developing and Using Models Use a model based on evidence to illustrate the relationship between systems or between components of a system. Clarification Statements Emphasis is on illus transformation of e organisms 	 LS1.C: Organization for Matter and Energy Flow in Organisms The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. Strating inputs and outputs of matter and energy in photosynthesis by plants and outputs of plants and outputs of plants and plants an	 Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.
	 Examples of model models. Content Limits Assessment does n 	ls could include diagrams, chemical equa	ations, and conceptual cell signaling pathways.
Science Vocabulary Students are Expected to Know	Organic, hydrocarbon, net nucleus, protein, ATP, amir	transfer, chloroplast, chlorophyll, cytop no acid, autotroph(s), heterotroph(s), al	lasm, mitochondria, vacuole, gae
Science Vocabulary Students are Not Expected to Know	Thylakoid, NADP(H/ ⁺), Calvin cycle, carbon fixation, redox reactions, electron transport chain, oxidative phosphorylation, photoautotroph(s), mesophyll, stomata, stroma, thylakoids, thylakoid membrane, light reactions, carotenoids, cytochrome complex, C ₃ pants, C ₄ plants		
		Phenomena	
Context/ Phenomena	 text/ nomena A maple tree in Washington state survives in the winter after losing all of its leaves. The waters of the Laguna Grande lagoon in Puerto Rico give off a bluish-green glow at night when disturbed. On the sill of a stained glass window, a soy plant behind the red glass panel grew taller than a soy plant behind the green glass panel. In a parking lot in the city of Bordeaux, France a tank filled with algae produces a green light. 		
This Performance Expectation and associated Evidence Statements support the following Task Demands.			
		Task Demands	
 Assemble or flow or energy. 	e or complete, from a collect chart that is capable of repre	tion of potential model components and senting the transformation of light ener	d distractors, an illustration gy into stored chemical
2. Use a me reactant	 Use a model to identify and describe the relationships in terms of matter and/or energy between the reactants and the products of photosynthesis.* 		

3.	Use a model to show the transfer of matter and flow of energy between an organism and its environment during photosynthesis.*		
4.	Make predictions about how additions/substitutions/removals of model components affect the transformation of light energy into stored chemical energy.*		
5.	Sort relevant from irrelevant information to support a model that demonstrates how sugar and oxygen are produced by carbon dioxide and water through the process of photosynthesis.		
6.	Given models or diagrams of photosynthesis, identify the components and the mechanism in each scenario OR identify the properties of the components that allow photosynthesis to occur.*		
7.	Identify missing components, relationships, or other limitations of a model intended to show how photosynthesis transforms light energy into stored chemical energy.		
8.	Describe changes of energy and matter that occur in a system due to photosynthesis.		
Performance	HS-LS1-6		
----------------	--	---	---------------------------------------
Expectation	Construct and revise an explanation based on evidence for how carbon, hydrogen, and		
	oxygen from sugar molecules may combine with other elements to form amino acids and/or		
	other large carbon-based molecules.		
Dimensions	Constructing Explanations	LS1.C: Organization for Matter and	Energy and Matter
	and Designing Solutions	Energy Flow in Organisms	 Changes of energy
	• Construct and revise an	 Sugar molecules formed contain 	and matter in a
	explanation based on valid	Carbon, nydrogen, and oxygen.	system can be
	and reliable evidence	used to make amine asids and	and matter flowing
	sources (including students'	other carbon-based molecules that	into out of and
	own investigations models	can be assembled into larger	within that system
	theories, simulations, peer	molecules (such as proteins or	within that system.
	review) and the assumption	DNA), used, for example, to form	
	that theories and laws that	new cells.	
	describe the natural world	 As matter and energy flow through 	
	operate today as they did in	different organizational levels of	
	the past and will continue	living systems, chemical elements	
	to do so in the future.	are recombined in different ways	
		to form different products.	
Clarifications	Clarification Statements		
and Content	Emphasis is on using ev	idence from models and simulations to	support explanations.
Limits	• Emphasis is on using evidence nom models and simulations to support explaitations.		
	Content Limits		
	Assessment does not include the details of the specific chemical reactions or		
	identification of macror	nolecules.	
	Students do not need to	<u>o know:</u> Specific biochemical pathways	and processes. Specific
	enzymes, oxidation-reduction		
Science	Hydrocarbon, carbohydrate, amino acid, nucleic acid, DNA, ATP, lipid, fatty acid, ingestion,		
Vocabulary	rearrangement, stable, open system.		
Students Are			
Expected to			
Know	Endethermic reaction exether	nic reaction corphic recritation ovidet	ion roduction
Vocabulary	endomermic reaction, exothermic reaction, aerobic respiration, oxidation, reduction,		
Students Are			
Not Expected			
to Know			
	Phenomena		
Context/	Some example phenomena for	HS-LS1-6:	
Phenomena	Hagfish produce and ar	e covered in a thick layer of protective	slime.
	The black widow spider	's silk is several times as strong as any c	other known spider silk,
	making it about as dura	pleas Kevlar.	ho molo's foother like
	 The remain slik moth, re antennae, inducing his 	ereases a prieromone that is sensed by t excited fluttering behavior	the male's reather-like
	The bombardier beetle	release a boiling, noxious, pungent spra	av that can repel
	potential predators.		,

This	This Performance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1.	Describe, identify, or select evidence supporting or contradicting a claim that sugar molecules containing organic elements (e.g., carbon, hydrogen, and oxygen) that are ingested by an organism are broken down and rearranged via chemical reactions to form proteins, lipids, and nucleic acids.		
2.	Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses.		
3.	Express or complete a description of the flow of energy and/or matter within and between living systems. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.*		
4.	Articulate, describe, or select the relationships, interactions, reactions and/or processes to be explained. This may entail sorting relevant from irrelevant information or features of the reactants and products.*		
5.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes in the amount and types of organic molecules ingested and the amount and type of products formed within a living system.		

Performance	HS-LS1-7		
Expectation	Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food		
	molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting		
	in a net transfer of energy.		
Dimensions	Developing and	LS1.C: Organization for Matter and Energy Flow in	Energy and Matter
	Using Models	Organisms	
	• Use a model based		• Energy cannot be
	on evidence to	 As matter and energy flow through different 	created or
	illustrate the	organizational levels of living systems, chemical	destroyed—it only
	relationships	elements are recombined in different ways to	moves between one
	between systems	form different products	place and another,
	, or between	• As a result of these chemical reactions, energy is	between objects
	components of a	transferred from one system of interacting	and/or fields, or
	svstem.	molecules to another. Cellular respiration is a	between systems.
	- /	chemical process in which the bonds of food	
		molecules and oxygen molecules are broken and	
		new compounds are formed that can transport	
		energy to muscles. Cellular respiration also	
		releases the energy needed to maintain body	
		temperature despite ongoing energy transfer to	
		the surrounding environment.	
Clarifications	Clarification Statement		
and Content	Emphasis is on the conceptual understanding of the inputs and outputs of the process of		
Limits	cellular respiration.		
2			
	Content Limits		
	 Students aren't expected to identify the steps or specific processes involved in cellular respiration. Assessment does not include mechanisms of cellular respiration (enzymatic activity, ovidation, molecular gradients, etc.) 		
	Students do not need to know: enzymes ATD synthese, metabolism, biochemical nathur		hiochemical nathways
	 <u>Students do not need to know:</u> enzymes, ATP synthase, metabolism, biochemical pathways, redox reactions, molecular transport. 		
	redox redetion		
Science	ATP, chemical bonds, e	energy transfer, glycolysis, enzymes, mitochondria, cyt	osol. cytoplasm.
Vocabulary	nitrogen, adenine, pho	osphate, amino acid	
Students Are			
Expected to			
Know			
Science	Biochemical, fatty acid	ls oxidizing agent, electron acceptor, biosynthesis, loco	omotion
Vocabulary	phosphorylation elect	ron transport chain chemiosmosis pyruvate pentose	
Students Are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenor	mena for HS-I S1-7	
Phenomena	Δ voung nlant	is grown in a howl of sugar water. As it grows, the amo	ount of sugar in the
THEHUIHEHA	 A young plant is grown in a powr of sugar water. As it grows, the amount of sugar in the water decreases 		
	water uetreds	ະວ.	

	 A bacterial colony in a petri dish is continually provided with sugar water. Over the course of a few days, the bacteria grow larger. When sugar water is no longer provided, the colonies shrink and some disappear. A person feels tired and weak before eating lunch. After eating some fruit, the person feel more energetic and awake. An athlete completing difficult training feels that her muscles recover and repair faster when she eats more food in a day, compared to when she ate less food in a day.
This Perfe	ormance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
14. Assemb plus oxy	le or complete an illustration or flow chart that is capable of representing the transformation of food gen into energy and/or new compounds. This <i>does not</i> include labeling an existing diagram.
15. Using th transfor	e developed model, identify and describe the relationships between the reactants of the mation and the products of the transformation.*
16. Using th never cr	e developed model, show that matter and energy are only rearranged during cellular respiration, but eated or destroyed.
17. Make pı the bala	edictions about how additions/substitutions/removals of certain components can maintain/destroy nce of the food plus oxygen \rightarrow energy/new compounds reaction.*
18. Given m scenaric	odels or diagrams of cellular respiration, identify the components and the mechanism in each OR identify the properties of the components that allow cellular respiration to occur.
19. Identify	missing components, relationships, or other limitations of the model.
20. Describe respirat	e, select, or identify the relationships among components of a model that describe or explain cellular ion.

Performance	HS-LS2-1		
Expectation	Use mathematical and/or computational representations to support explanations of factors that		
	affect carrying capacity of ecosystems at different scales.		
Dimensions	Using Mathematical	LS2.A: Interdependent Relationships in	Scale, Proportion, and
	and Computational	Ecosystems	Quantity
	Thinking	Ecosystems have carrying capacities, which are	• The significance of a
	Use mathematical	limits to the numbers of organisms and	phenomenon is
	and/or	populations they can support. These limits	dependent on the
	computational	result from such factors as the availability of	scale, proportion,
	representations of	living and nonliving resources and from	and quantity
	phenomena or	challenges such as predation, competition and	involved.
	design solutions to	disease. Organisms would have the capacity to	
	support explanations	produce populations of greater size were it not	
		for the fact that environments and resources	
		are finite. This fundamental tension affects the	
		abundance (number of individuals) of species in	
		any given ecosystem.	
Clarifications	Clarification Statements		
and Content	Emphasis is on c	• Wantitative analysis and comparison of the relations	hins among
Limits	 Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors, including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and 		
LITIUS			
	population changes gathered from simulations or historical data sets		
	 Examples of mathematical representations include finding the average, determining trends. 		
	and using graph	ic comparisons of multiple sets of data	
	Content Limits		
	Assessment doe	s not include deriving mathematical equations to ma	ake comparisons.
	<u>Students do not need to know:</u> Calculus/advanced mathematics (e.g., exponential growth and		
	decay).		
Science	Predation, interdepende	ent, disturbance, equilibrium of ecosystems, fluctuation	on, stable, biotic,
Vocabulary	abiotic, sustain, anthrop	ogenic, overexploitation, urbanization, population, e	emigrants, immigrants,
Students Are	exponential, generation	, rebounding, limiting resources, logistic, competition	i, negative reedback,
Expected to	population control.		
Science	Dispersion, demography	, survivorship curve (J or S), reproductive table, sem	elparity, iteroparity.
Vocabularv	metapopulation, demographic transition, resource partitioning. Shannon diversity, hieropartity,		
, Students Are	density dependent selec	tion (K-selection), density independent selection (r s	election), intrinsic
Not Expected	factors.		
to Know			
	Phenomena		
Context/	Some example phenome	ena for HS-LS2-1:	
Phenomena	On Ngorogoro C	rater in Tanzania in 1963, a scientist sees that there	are much fewer lions
	than there were	on previous visits.	
	On St. Matthew	Island, reindeer were introduced in 1944, but today	no reindeer can be
	tound on the isla	and.	
	 In Washington S 	tate, more harbor seals are present today than in th	e past.

	 In Alaska, you can see many more brown bears in Lake Clark National Park than in Denali National Park.
	This Device was a function and essentiated fundaments for any next the following Teal. Demands
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Make calculations using given data to calculate or estimate factors affecting the carrying capacity of an ecosystem.*
2.	Illustrate, graph, or identify relevant features or data that can be used to calculate or estimate factors affecting the carrying capacity of ecosystems of different scales.*
3.	Calculate or estimate properties of or relationships between factors affecting the carrying capacity of an ecosystem based on data from one or more sources.
4.	Compile, from given information, the data needed for a particular inference about factors affecting the carrying capacity of an ecosystem. This can include sorting out the relevant data from the given information and representing the data through graphs, charts, and/or histograms.
5.	Use quantitative or abstract reasoning to make a claim about the factors that affect the carrying capacity of an ecosystem.

Performance	HS-LS2-2		
Expectation	Use mathematical representations to support and revise explanations, based on evidence about		
	factors affecting biodiversity and populations in ecosystems of different scales.		
Dimensions	Using Mathematical	LS2.A: Interdependent Relationships in	Scale, Proportion, and
	and Computational	Ecosystems	Quantity
	 Thinking Use mathematical representations of phenomena or design solutions to support and revise explanations. 	• Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits results from factors such as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of greater size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem.	• Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale.
		 LS2.C: Ecosystem Dynamics, Functioning, and Resilience A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient) as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. 	
Clarifications and Content Limits	 Clarification Statements Examples of ma and using graph 	s thematical representations include finding the aver ic comparisons of multiple sets of data.	age, determining trends,
	Content Limits Assessment is line Students do not and decay) 	mited to provided data. <u>t need to know</u> : Calculus/advanced mathematics (e.g., exponential growth
Science Vocabulary Students Are Expected to Know	Carrying capacity, anthropogenic changes, overexploitation, extinction, demographic, population pyramid, deforestation, habitat fragmentation, sustainable, abiotic factor, biotic factor, species richness, symbiosis, niche, fragile ecosystem, biodiversity index, zero population growth, density, dispersion, immigration, emigration, limiting factor		nographic, population iotic factor, species ation growth, density,
Science	Water regime, direct dri	ver, eutrophication, species evenness, range of tole	rance, realized niche,
Vocabulary	niche generalist, niche s	pecialist, edge habitat, endemic species, logistic gro	wth model, exponential

Students Are Not Expected to Know	population growth, mark-recapture method, territoriality, demography, cohort, survivorship curve, reproductive table, life history, semelparity, iteroparity, K-selection, r-selection, dieback.		
	Phenomena		
Context/	Some example phenomena for HS-LS2-2:		
 Phenomena After brown tree snakes were accidentally introduced to Guam in the 1950s, 11 native species went extinct. When European settlers decreased the wolf population for safety, deer populations the and overconsumed native plant species. California's Central Valley can support fewer waterfowl in the winter during drought. The cones of Lodgepole pines do not release their seeds until a fire melts the resin that keeps them sealed. 			
This Perfc	rmance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
 Make simple calculations using given data to calculate or estimate factors affecting biodiversity and populations in ecosystems. 			
2. Illustrat affecting	e, graph, or identify relevant features or data that can be used to calculate or estimate factors biodiversity and populations in ecosystems of different scales.		
3. Calculate ecosyste	3. Calculate or estimate properties of or relationships between factors affecting biodiversity and populations in ecosystems based on data from one or more sources.		
 Compile, from given information, the data needed for a particular inference about factors affecting biodiversity and populations in ecosystems. This can include sorting out the relevant data from given information. 			
5. Construe different	ct an explanation regarding the relationship between biodiversity and populations in ecosystems of t scales using the given, calculated, or compiled information.		
6. Revise o ecosyste	Revise or evaluate a given explanation of the relationship between biodiversity and populations in ecosystems of different scales based on the given, calculated, or compiled information.		

Performance	HS-LS2-3			
Expectation	Construct and revise an explanation based on evidence for the cycling of matter and flow of energy			
	in aerobic and anaerobic conditions.			
Dimensions	Constructing Explanations and Designing SolutionsLS2.B: Cycles of MatterEnergy an• Construct and revise an explanation based on valid and reliable evidence obtained from aand Energy Transfer in EcosystemsMatter • Energy c			
	variety of sources (including students' own investigations, models, theories, simulations, and peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	 Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for the processes. 	the cycling of matter within and between systems.	
Clarifications	Clarification Statements			
and Content	Emphasis is on conceptual understanding of t different environments	he role of aerobic and anae	erobic respiration in	
	 different environments. Emphasis is on conceptual understanding that the supply of energy and matter restricts a system's operation; for example, without inputs of energy (sunlight) and matter (carbon dioxide and water), a plant cannot grow. 			
	Content Limits			
	 Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration. 			
	 Students do not need to know: lactic acid vs. photosynthesis, cellular respiration, or ferme 	alcoholic fermentation, che ntation.	mical equations for	
Science Vocabulary Students Are Expected to Know	Organic compound synthesis, net transfer, biomass, carbon cycle, solar energy			
Science	Lactic acid fermentation, alcoholic fermentation, glyc	olysis, Kreb's cycle, electror	n transport chain.	
Vocabulary				
Students Are				
Not Expected				
	Dhonomere			
Context/	Some example phenomena for HS LS2 2:			
Phenomena	After running for a long period of time huma	n muscles develop sorenes	s and a burning	
	sensation, and breathing rate increases.			
	Bread baked with yeast looks and tastes diffe	rently than bread that is ba	ked without yeast.	
	A plant that is watered too much will have so	ft, brown patches on their l	eaves and will fail	
	to grow.			
	 Cyanobacteria differ from other bacteria in th and also lack flagella. 	nat cyanobacteria appear bl	ue-green in color	
This Perfo	prmance Expectation and associated Evidence Stateme	nts support the following Ta	ask Demands.	
	Task Demands			

1.	Describe, identify, or select evidence supporting or contradicting a claim about the role of photosynthesis and aerobic and anaerobic respiration in the cycling of matter and energy in an ecosystem.
2.	Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses.
3.	Express or complete a description of the flow of energy and/or matter between organisms. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.*
4.	Articulate, describe, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features of the reactants and products.*
5.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes in environmental conditions on the flow of matter and energy between organisms.

Performance	HS-LS2-4		
Expectation	Use mathematical representations to support claims for the cycling of matter and flow of energy		
	among organisms in an ecosystem.		1
Dimensions	Using Mathematical	LS2.B: Cycles of Matter and Energy Transfer in	Energy and Matter
	and Computational	Ecosystems	 Energy cannot be
	Thinking	Plants or algae from the lowest level of the food	created or
	 Use mathematical 	web. At each link upward in a food web, only a	destroyed; it only
	representations of	small fraction of the matter consumed at the	moves between
	phenomena, or	lower level is transferred upward, to produce	one place and
	design solutions to	at the higher level. Given this inefficiency, there	another place,
	support claims.	are generally fewer organisms at higher levels of a	and/or fields or
		food web. Some matter reacts to release energy	between systems.
		for life functions, some matter is stored in newly	
		made structures and much is discarded. The	
		chemical elements that make up the molecules of	
		organisms pass through food webs and into and	
		out of the atmosphere and soil, and they are	
		each link in an ecosystem, matter and energy are	
		conserved.	
Clarifications	Clarification Statement	ts	·
and Content	Emphasis is on using a mathematical model of stored energy in biomass to describe the		ass to describe the
Limits	transfer of energy from one trophic level to another, and that matter and energy are		
	conserved as matter cycles and energy flows through ecosystems.		
	Emphasis is on	atoms and molecules—such as carbon, oxygen, hydrog	gen, and hitrogen—
	Content Limits		
	Assessment is I	imited to proportional reasoning to describe the cyclin	g of matter and flow of
	energy.		
	• <u>Students do not need to know</u> : the specific biochemical mechanisms or thermodynamics cellular respiration to produce ATP or of photosynthesis to convert sunlight energy into		or thermodynamics of
			inlight energy into
	giucose.		
Science	Interdependent, nutrie	nt. hydrocarbon. transfer system. equilibrium of ecosy	stems, decomposer.
Vocabulary	producer, ATP, solar en	ergy, predator-prey relationship, trophic level	, , ,
Students Are			
Expected to			
Know			
Science	Detritivore, denitrificat	ion, thermodynamics, nitrogen fixation, biogeochemic	al cycle, anaerobic
Vocabulary	process.		
Not Expected			
to Know			
	.	Phenomena	
Context/	Some example phenom	nena for HS-LS2-4:	
Phenomena	• In the 6,000-he	ctare rainforest of San Lorenzo, Panama, there are 312	2 arthropods for every
	mammal, inclu	ding humans.	

	 In Silver Springs, Florida, the biomass of plants is 809 g/m², while the biomass of large fish is 5 g/m². A herd of grazing caribou in the Seward Peninsula of Alaska are seen eating the leaves of birch trees in July. In December, they are seen eating tree lichen. A pine tree growing in a forest remains in one location throughout its lifetime. A fox in the same forest moves around every day of its life. 	
This Perf	ormance Expectation and associated Evidence Statements support the following Task Demands.	
	Task Demands	
1. Calculat	e or estimate changes or differences in matter and energy between trophic levels of an ecosystem. **	
2. Illustrat of an ec	e, graph, or identify a mathematical model describing changes in stored energy through trophic levels osystem.**	
 Compile and interpret data from given information to establish the relationship between organisms at different trophic levels.* 		
4. Use qua the trop	4. Use quantitative or abstract reasoning to make a claim about the cycling of matter and flow of energy through the trophic levels of an ecosystem. This may include sorting relevant from irrelevant information.*	
5. Identify relative	and describe the components of a mathematical representation of an ecosystem that could include quantities related to organisms, matter, energy, and the food web of that ecosystem.	

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TDs 1 and 2 may be used for stand-alones in combination with TD3 and TD4.

Performance	HS-LS2-5		
Expectation	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of		
	carbon among the biosp	here, atmosphere, hydrosphere, and geosphere	2.
Dimensions	Developing and Using	LS2.B: Cycles of Matter and Energy Transfer	Systems and System
	Models	in Ecosystems	Models
	• Develop a model	Photosynthesis and cellular respiration are	• Models (e.g., physical,
	based on evidence to	important components of the carbon	mathematical, or
	illustrate the	cycle, in which carbon is exchanged among	computer models) can
	relationships	the biosphere, atmosphere, oceans, and	be used to simulate
	between systems or	geosphere through chemical, physical,	systems and
	components of a	geological, and biological processes.	interactions—including
	system.		energy, matter, and
		PS3.D: Energy in Chemical Processes	information flows—
		The main way that solar energy is captured	within and between
		and stored on Earth is through the	systems at different
		complex chemical process known as	scales.
		photosynthesis. <i>(secondary)</i>	
Clarifications	Clarification Statements	5	
and Content	 Examples of mo 	dels could include simulations and mathematica	al models.
Limits			
	Content Limits		
	Assessment doe	s not include the specific chemical steps of pho	tosynthesis and
	respiration.		
Ceieree			
Science	Recycle, consumer, tran	sform, organism, convert, decomposer, produce	er, nydrocarbon, microbes,
Students Are	AIP		
Students Are			
Know			
Science	Endothermic reaction e	xothermic reaction free energy hydrolysis oxid	dation
Vocabulary			
Students Are			
Not Expected			
to Know			
	.	Phenomena	
Context/	Some example phenome	ena for HS-LS2-5:	
Phenomena	 A herd of cows g 	grazing in a field wear balloon-like backpack dev	rices on their backs.
	 A piece of coal p 	preserving a fossil leaf imprint is burned within t	he furnace of a coal-fired
	electrical power	plant. Smoke generated from the fire escapes of	out of a smoke stack
	 Several acres of 	trees are cut down and burned, generating clou	uds of smoke.
	Two mice die in	the woods in November, one in Massachusetts	and one in Florida. The
	Florida mouse d	ecomposes much more quickly than the Massa	chusetts mouse.
This Perfor	mance Expectation and a	ssociated Evidence Statements support the follo	Dwing Task Demands.
1 Accomb	le or complete an illustrati	I disk Demands	how the processes of
T. V22611D			

	processes through two or more spheres (biosphere, atmosphere, hydrosphere, geosphere). This <i>does not</i> include labeling an existing diagram.
2.	Using the developed model, identify and describe the relationships between the processes of photosynthesis and cellular respiration, and the coordinated functions of transferring carbon among two or more spheres (biosphere, atmosphere, hydrosphere, geosphere).
3.	Using the developed model, show that photosynthesis and cellular respiration are important parts of the overall carbon cycle that transfers carbon through two or more spheres (biosphere, atmosphere, hydrosphere, geosphere).
4.	Make predictions about, or generate explanations for, how substitutions of certain components in the model can interrupt or change the relationships between, or functions of, those components, thus effecting the cycling of carbon through the various spheres (biosphere, atmosphere, hydrosphere, geosphere).
5.	Given models or diagrams* of the processes of photosynthesis and cellular respiration, identify the components and the mechanisms in each process that cycle carbon OR identify the properties of the components that allow those functions to occur.
6.	Identify missing components, relationships, or other limitations of the model.
7.	Modify/augment/add to the model to change or add steps that can alter the cycling of carbon through the various spheres (biosphere, atmosphere, hydrosphere, and/or geosphere).
	we have the second s

*Labeled diagrams by themselves are not usually sufficient to serve as models.

Performance	HS-LS2-6		
Expectation	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain		
	relatively consistent numbers and types of organisms in stable conditions, but changing		
	conditions may result in	n a new ecosystem.	
Dimensions	Engaging in	LS2.C: Ecosystem Dynamics, Functioning, and	Stability and
	Argument from	Resilience	Change
	Evidence		
		 A complex set of interactions within an ecosystem 	 Much of science
	 Evaluate the claims, 	can keep its numbers and types of organisms	deals with
	evidence, and	relatively constant over long periods of time under	constructing
	reasoning behind	stable conditions. If a modest biological or physical	explanations of
	currently accepted	disturbance to an ecosystem occurs, it may return	how things change
	explanations or	to its more or less original status (i.e., the	and how they
	solutions to	ecosystem is resilient), as opposed to becoming a	remain stable.
	determine the	very different ecosystem. Extreme fluctuations in	
	merits of	conditions or the size of any population, however,	
	arguments.	can challenge the functioning of ecosystems in	
		terms of resources and habitat availability.	
Clarifications	Clarification Statement		
and Content	Examples of ch	us anges in association conditions could include modest his	agical or physical
Limits	 Examples of the changes such a 	anges in ecosystem conditions could include modest bio	anges such as
Linits	volcanic eruntio	on or sea-level rise	unges, such as
	To show full co	mprehension of the PF the student must demonstrate a	n understanding that
	in a stable ecos	system, the average activity by the nutrients, decompose	rs. producers.
	primary consur	ners, secondary consumers, and tertiary consumers rem	ains relatively
	consistent. Wh	en each of these levels has high levels of diversity, the eq	osystem is stable
	because the gro	pup as a whole is better able to respond to pressures. Ho	, wever, even a
	healthy, diverse	e ecosystem is subject to extreme changes when faced w	ith enough pressure.
	Content Limits		
	Assessment do	es not include Hardy-Weinberg equilibrium calculations.	
Science	Biosphere, biodiversity,	, carbon cycle, water cycle, nitrogen cycle, fluctuation, co	onsistent, stable,
Vocabulary	equilibrium, species, er	nergence, extinction, niche, native, non-native, invasive,	overgrazing, human
Students Are	impact, succession, prir	mary succession, secondary succession.	
Expected to			
Know	Constinuit foundars	ffeet Hendy Misishers internedicts disturbence by set	
Science	Genetic aritt, tounder e	errect, Hardy-weinberg, intermediate disturbance hypotr	iesis, species-area
Students Are	curve.		
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenom	nena for HS-LS2-6:	
Phenomena	The population	s of rabbits and deer in the Florida Everglades significant	ly decreased with the
	introduction of	the Burmese python.	,
	Biodiversity of	an area of the Amazon rainforest is affected differently in	n sustainable and
	non-sustainable	e lumber farms.	

	 After a fire, the biodiversity of a forest immediately decreases but eventually increases. An increase in mouse populations are observed the year after a flood but return to pre-flood numbers the following year.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Based on the provided data or information, identify the explanation that complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.
2.	Identify and/or explain the claims, evidence, and reasoning supporting the explanation that complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.
3.	Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of the complex interactions in ecosystems, factors that affect biodiversity, relationships between species and the environment, and changes in numbers of species and organisms in a stable or changing ecosystem.
4.	Evaluate the strengths and weaknesses of a claim to explain the relationship of biodiversity and the environment in an ecosystem based on the evidence or data provided.*
5.	Analyze and/or interpret evidence and its ability to support the explanation of the resiliency of an ecosystem in response to different levels of change.*
6.	Provide and/or evaluate reasoning to support the explanation that an ecosystem remains relatively consistent when faced with modest disturbances, but it may experience extreme changes or fluctuations in biodiversity when faced with extreme disturbances.*

Performance	HS-LS2-7		
Expectation	Design, evaluate, and refine a solution for reducing the impacts of human activities on the		
	environment and biod	iversity.	
Dimensions	Constructing	LS2.C: Ecosystem Dynamics, Functioning, and	Stability and
	Explanations and	Resilience	Change
	Designing Solutions	 Moreover, anthropogenic changes (induced by 	 Much of science
	 Design, evaluate, 	human activity) in the environment—including	deals with
	and refine a	habitat destruction, pollution, introduction of	constructing
	solution to a	invasive species, overexploitation, and climate	explanations of
	complex real-world	change—can disrupt an ecosystem and threaten the	how things change
	problem, based on	survival of some species.	and how they
	scientific		remain stable.
	knowledge,	LS4.D: Biodiversity and Humans	
	student-generated	 Biodiversity is increased by the formation of new 	
	sources of	species (speciation) and decreased by the loss of	
	evidence,	species (extinction). (secondary)	
	prioritized criteria,		
	and trade-off	ETS1.B: Developing Possible Solutions	
	considerations.	 When evaluating solutions, it is important to take 	
		into account a range of constraints including cost,	
		safety, reliability, and aesthetics, and to consider	
		social, cultural, and environmental impacts.	
		(secondary)	
Clarifications	Clarification Statemer		
and Content	Examples of h	uman activities can include urbanization, building dams,	and dissemination of
Limits	invasive specie	2S.	
	Content Limits		
	Assessment de	as not include physical equations describing mechanics	of solutions or
	 Assessment up mechanics of 	engineered structures	
	 Students do n 	ot need to know: quantitative statistical analysis, specific	conditions required
	for failure spe	or fired to know. Quantitative statistical analysis, specific of constructing the solution	conditions required
		control of constructing the solution.	
Science	Carrying capacity, corr	petition, urbanization, conversation biology, endangered	d species, threatened
Vocabulary	species, introduced sp	ecies, overharvesting, extinction, greenhouse effect, carl	pon footprint
Students Are			·
Expected to			
Know			
Science	Laws of thermodynam	ics, Hardy-Weinberg equilibrium, Lotka-Volterra equatio	ns, allelopathy,
Vocabulary	density-dependent po	pulation regulation, extinction vortex, minimum viable p	opulation (MVP),
Students Are	effective population si	ze, movement corridor, biodiversity hot spot, zoned rese	erve, critical load,
Not Expected	biological magnification	n, assisted migration, sustainable development.	
to Know			
		Phenomena	
Context/	Some example of pher	nomena for HS-LS2-7:	
Phenomena	The spread of	cities through urbanization has destroyed wildlife habita	ts across the planet.
	Air pollution fi	rom driving cars has made the air unsafe to breathe in m	any areas.
	 Dams have led 	t to flooding of large areas of land, destroying animal hat	pitats.

 Fishing has drastically changed marine ecosystems, removing certain predators or certain prey.
This Performance Expectation and associated Evidence Statements support the following Task Demands.
Task Demands
 Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.
 Express or complete a causal chain explaining how human activity impacts the environment. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause- and-effect chains.
3. Identify evidence supporting the inference of causation that is expressed in a causal chain.
4. Use an explanation to predict the environmental outcome, given a change in the design of human technology.
5. Describe, identify, and/or select information needed to support an explanation.
 Identify or describe relevant aspects of the problem that given design solutions for reducing the impacts of human activities on the environment and biodiversity, if implemented, will resolve or improve.
 Using given information about the effects of human activities on the environment and biodiversity, select or identify criteria against which the solution should be judged.
8. Using given information about the effects of human activities on the environment and biodiversity, select or identify constraints that the solution must meet.
 Evaluate the criteria and constraints, along with trade-offs, for a proposed or given solution to resolve or improve the impact of human activities on the environment and biodiversity.
10. Using given data, propose a potential solution to resolve or improve the impact of human activities on the environment and biodiversity.
11. Using a simulator, test a proposed solution to resolve or improve the impact of human activities on the environment and biodiversity and evaluate the outcomes.
12. Evaluate and/or revise a solution to resolve or improve the impact of human activities on the environment and biodiversity and evaluate the outcomes

Performance	HS-LS2-8		
Expectation	Evaluate the evidence for the role of group behavior on individual and species' chances to survive		
	and reproduce.		
Dimensions	 Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. 	 LS2.D: Social Interactions and Group Behavior Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Clarifications	Clarification Statements		
and Content Limits	 Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming. Content Limits Students do not need to know: How to develop or analyze computer simulations and mathematical models that emulate the flocking behavior of animals. Individual genes or complex gene interactions determining individual animal behavior. 		
Science	Behavioral ecology, cooperat	ive behavior, altruism, environmental s	timuli, circadian clock,
Vocabulary Students Are Expected to Know	communication, foraging, opt mutual protection, packs	imal foraging model, energy costs and	benefits, competition, predator,
Science	Fixed action pattern, pherom	ones, innate behavior, learning, imprint	ting, spatial learning, social
Vocabulary	learning, associative learning,	problem solving, cognition, game theo	ry, agonistic behavior, mating
Students Are	behavior, mating systems, pa	rental care, mate choice, male competi	tion for mates, reciprocal
to Know	aitruism, shoaling		
		Phenomena	
Context/	Some example phenomena fo	or HS-LS2-8:	
Phenomena	 Several hundred nake one large naked mole food. A worker bee is obser bees crowd around h A lioness charges tow the opposite direction A certain species of sl several square kilome 	ed mole rats are observed living togethe e rat is observed reproducing, while the rved flying away from its colony. Upon r im while he moves in a distinct pattern, ard a large herd of galloping zebra, but n. hort-horned grasshoppers changes colo eters over a period of a few weeks.	er in a colony. However, only others in the colony bring her returning many other worker then stops and runs away in or, band together, and fly over
This Perfo	prmance Expectation and assoc	iated Evidence Statements support the	tollowing Task Demands.
		Task Demands	

 Based on the provided data, identify, describe, or construct a claim regarding how specific group behavior(s) can increase an individual's or species' chances of surviving and reproducing. Sort inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce into those that are supported by the data, contradicted by the data, outliers in the data, or neither, or some similar classification. Identify patterns of information/evidence in the data that support correlative/causative inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.* Construct an argument using scientific reasoning, drawing on credible evidence to explain the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.** 		
 Sort inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce into those that are supported by the data, contradicted by the data, outliers in the data, or neither, or some similar classification. Identify patterns of information/evidence in the data that support correlative/causative inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.* Construct an argument using scientific reasoning, drawing on credible evidence to explain the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.** 	1.	Based on the provided data, identify, describe, or construct a claim regarding how specific group behavior(s) can increase an individual's or species' chances of surviving and reproducing.
 Identify patterns of information/evidence in the data that support correlative/causative inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.* Construct an argument using scientific reasoning, drawing on credible evidence to explain the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's on an individual's and species' chances to survive and reproduce. Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.** 	2.	Sort inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce into those that are supported by the data, contradicted by the data, outliers in the data, or neither, or some similar classification.
 Construct an argument using scientific reasoning, drawing on credible evidence to explain the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.** 	3.	Identify patterns of information/evidence in the data that support correlative/causative inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.*
 Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce. Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.** 	4.	Construct an argument using scientific reasoning, drawing on credible evidence to explain the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.
 Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.** 	5.	Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.
	6.	Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.**

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD6 – summarize is the emphasis here. Avoid identify and organize.

Performance	HS-LS3-1		
Expectation	Ask questions to clarify relationships about the role of DNA and chromosomes in coding the		
	instructions for chara	cteristic traits passed from parents to offspring.	1
Dimensions	Asking Questions	LS1.A: Structure and Function	Cause and Effect
	 and Defining Problems Ask questions that arise from examining models or a theory to clarify relationships. 	 All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary) LS3.A: Inheritance of Traits Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species' characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. 	• Empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects.
Clarifications	Clarification Stateme	nts:	
and Content	At this level.	the study of inheritance is restricted to Mendelian genet	ics, including
Limits	dominance, c	odominance, incomplete dominance, and sex-linked trai	its.
	Focus is on ex	pression of traits on the organism level and should not h	pe restricted to protein
	production.		
	Content Limits:		
	 Assessment c 	loes not include the phases of meiosis or the biochemica	l mechanism of
	specific steps	in the process.	
	 Assessment c 	loes not include mutations or species-level genetic variat	tion including Hardy-
	Weinberg eq	uilibrium.	6
Science	Genome, zygote, fert	ilization, dominant, recessive, codominance, incomplete	dominance, sex-
Vocabulary	linked, allele, sequen	cing, pedigree, parent generation, F1, F2, haploid, diploid	d, replication.
Students Are			
Expected to			
Know			
Science	Epigenetics, interpha	se, prophase, metaphase, anaphase, telophase, cytokine	esis, epistasis.
Vocabulary			
Students Are			
Not Expected			
to Know			
	1	Phenomena	
Context/	Some example pheno	omena for HS-LS3-1:	
Phenomena	DNA sequence	ing shows that all people have the gene for lactase prod	uction, but only about
	30% of adults	s can digest milk.	
	Polydactyl tal	bby cat Jake holds the world record for most toes, with s	even toes on each
	paw.		

	• <i>E. coli</i> bacteria are healthful in mammalian intestines but makes mammals sick when ingested.
	E. coli bacteria are used to produce human insulin.
Th	is Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
8. lc ai in	lentify or construct an empirically testable question based on the phenomenon that could lead to design of n experiment or model to define the relationships between the role of DNA and/or chromosomes in the heritance of traits.*
9. A ca	ssemble or complete, from a collection of potential model components, an illustration, or pedigree that is apable of representing the role of genetic material in coding the instructions for inheritance.*
10. C	onstruct a question that arises from examining a model or theory to clarify the connections between NA/chromosomes and inheritance of traits.*
11. N q fr	Take predictions about the pattern of inheritance based on a model derived from the empirically testable uestion. Predictions can be made by manipulating model components, completing illustrations, or selecting om lists with distractors.
12. A aı	ssemble or complete a flow chart describing the cause and effect relationships between genetic material nd the characteristic traits passed from parents to offspring.

Performance	HS-LS3-2		
Expectation	Make and defend a claim based on evidence that inheritable genetic variations may result from: (1)		
	new genetic combin	ations through meiosis, (2) viable errors occurring during repl	ication, and/or (3)
	mutations caused by	y environmental factors.	
Dimensions	Engaging in	LS3.B: Variation of Traits	Cause and Effect
	Argument from	In sexual reproduction, chromosomes can sometimes	• Empirical
	Evidence	swap sections during the process of meiosis (cell	evidence is
	Make and	division) thereby creating new genetic combinations and	required to
	defend a claim	thus more genetic variation. Although DNA replication is	differentiate
	based on	tightly regulated and remarkably accurate errors do	botwoon causo
	based on	accur and result in mutations, which are also a source of	and correlation
	the network world	sonationariation. Environmental factors can also cause	and correlation,
	the natural world	genetic variation. Environmental factors can also cause	and to make
	that reflects	mutations in genes, and viable mutations are innerited.	claims about
	scientific	Environmental factors also affect expression of traits,	specific causes
	knowledge and	and, hence, they affect the probability of occurrences of	and effects.
	student-	traits in a population. Thus, the variation and distribution	
	generated	of traits observed depends on both genetic and	
	knowledge.	environmental factors.	
Clarifications	Clarification Statem	ents	
and Content	Emphasis is	on using data to support arguments for the way variation occ	urs.
Limits	 Inheritable t 	raits should be traits that can be passed down through more	than one
	generation.		
	 Inheritable t 	raits for this PE do not include dominant/recessive traits	
	 Examples of 	avidence for new genetic combinations and viable errors can	include:
		evidence for new genetic combinations and viable enors can	include.
		A sequence comparison between parents and children,	
	• DNA	a sequence companson.	
	Content Limits		
	Assessment	does not include assessing meiosis or the biochemical mecha	nism of specific
	steps in the	process.	
	 <u>Students do</u> 	not need to know: bioinformatics, specific genetic disorders.	
Science	Amino acid, DNA, er	zyme, protein synthesis, chromosome, egg, egg cell, sperm, s	perm cell, dominant
Vocabulary	trait, recessive trait,	recombination, sex cell, sex chromosome, sex-linked trait, me	eiosis, mutation,
Students Are	advantageous, expre	ession, base pairs, genome, UV radiation, triplet codon, inserti	ion, deletion,
Expected to	frameshift, substitut	ion, somatic, epigenetic.	
Know			
Science	Polyploidy, single nu	cleotide polymorphisms (SNPs), conjugation, DNA polymerase	e, mutagenic,
Vocabulary	chromosomal transl	ocation, missense, nonsense, nongenic region, tautomerism, o	depurination,
Students Are	deamination, slipped	d-strand mispairing, Sheik disorder, prion, epidemiology.	
Not Expected			
to Know			
		Phenomena	
Context/	Some example phen	omena for HS-LS3-2:	
Phenomena	 Due to nesti 	cide residue frogs have extra non-functioning limbs	
	Most shields	ns have feathers that law flat against their hadies. In one famil	wofchickons 50%
	of offenring	have feathers that curl away from their bodies. III ONE Idilli	iy of chickells, JU/0
1		nave reachers that can away hold theil DUUIES.	

	 A single gene mutation accounts for the blue color of irises in over 99.5% of people with blue eyes.
	 One sunflower growing in a field has a wide, flat stem and an unusual number of leaves. The next year, several sunflowers in the field share these traits.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Based on the provided data, make or construct a claim regarding inheritable genetic variations that may result from: 1) new genetic combinations through meiosis, 2) viable errors occurring during replication, and/or 3) mutations caused by environmental factors. This <i>does not</i> include selecting a claim from a list.
2.	Sort inferences about inheritable genetic variation into those that are supported by the data, contradicted by the data, or none of these—or some similar classification.
3.	Identify patterns of information/evidence in the data that support correlative/causative inferences about inheritable genetic variation.
4.	Construct an argument using scientific reasoning that draws on credible evidence to explain how inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. (Hand scored CR)
5.	Identify additional evidence that would help clarify, support, or contradict a claim or causal argument.
6.	Identify, describe, and/or construct alternate explanations or claims, and cite the data needed to distinguish among them.
7.	Predict outcomes of genetic variations, given the cause-and-effect relationships of inheritance.

Performance	HS-LS3-3		
Expectation	Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.		
Dimensions	Analyzing and Interpreting Data	LS3.B Variation of Traits	Scale, Proportion and
	• Apply concepts of statistics and	• Environmental factors also	Quantity
	probability (including	affect expression of traits, and	• Algebraic thinking is used
	determining function fits to	hence affect the probability of	to examine scientific data
	data, slope, intercept, and	occurrences of traits in a	and predict the effect of a
	correlation coefficient for linear	population. Thus, the variation	change in one variable on
	fits) to scientific and engineering	and distribution of traits	another (e.g., linear
	questions and problems, using	observed depends on both	growth vs. exponential
	digital tools when feasible.	genetic and environmental	growth).
		factors.	
Clarifications	Clarification Statements		
and Content	Emphasis is on the use of m	athematics to describe the probabi	ility of traits as it relates to
Limits	genetic and environmental	factors in the expression of traits.	
	 Sensitivity and precaution s 	hould be used around the use of bo	oth lethal recessive and
	dominant human traits (i.e.	, Huntington's, achondroplasia, Tay	-Sachs, cystic fibrosis).
	Content Limits		
	Assessment is limited to ba	sic statistical and graphical analysis	
	• Assessment does not include Hardy-Weinberg calculations $(n^2 + 2nq + q^2 = 1 \text{ or } n + q = 1)$		
	 Students do not need to kn 	ow: pleiotropy, meiosis, specific na	mes of genetic disorders.
Science	Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation,		
Vocabulary	F_1 generation, F_2 generation, complete dominance, incomplete dominance, codominance, pedigree,		
Students are	carrier, tertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis.		
Know			
Science	Test-cross, monohybrid, dihybrid, la	aw of independent assortment, law	of segregation, pleiotropy,
Vocabulary	norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele.		
Students are			
Not Expected			
to Know			
Context/	Some example phenomena for HS-I	sa-a.	
Phenomena	• O Positive is the most com	non blood type. Not all ethnic group	os have the same mix of these
1 nenomena	blood types. Hispanic peop	le, for example, have a relatively his	sh number of O's, while Asian
	people have a relatively hig	h number of B's.	,
	Hydrangea flowers of the sa	ame genetic variety range in color f	rom blue-violet to pink, with
	the shade and intensity of o	color depending on the acidity and a	aluminum content of the soil.
	Most humans were born w	th five fingers on each hand, yet th	e polydactyl trait (having
	more than five fingers on e	ach hand) is the dominant trait.	
	When a red rose is crossed	with a white rose, all pink roses are	e produced.
This Perfo	ormance Expectation and associated	Evidence Statements support the fo	bllowing Task Demands.
	Т	ask Demands	

1		Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*
2	2.	Make predictions about the trait frequency or distribution in a population due to the presence/absence or addition/removal of both genetic and environmental factors.*
3	8.	Organize and/or arrange (e.g., using illustrations and/or labels) data, or summarize data to provide evidence for an explanation of the relationship between a trait's occurrence in a population and genetic and environmental factors.
4	ŀ.	Analyze, evaluate, estimate, calculate, and/or construct an equation for the statistical mean and/or the standard deviation, to describe the change in the distribution of a trait in a population over time, due to genetic and environmental factors.*
5	.	Identify statistical anomalies or outliers for a trait or a population that are outside the expected range (norm reaction), which may or may not be quickly removed due to genetic and environmental factors.

Performance	HS-LS4-1		
Expectation	Communicate scientific information that common ancestry and biological evolution are supported		
	by multiple lines of empirical evidence.		
Dimensions	Obtaining, Evaluating, and	LS4.A: Evidence of Common Ancestry and	Patterns
	 Communicating Information Communicate scientific information (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). 	 Diversity Genetic information, like the fossil record, provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence. 	• Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
Clarifications and Content Limits	 Clarification Statements Emphasis is on a concern common ancestry and Examples of evidence and order of appearant 	eptual understanding of the role each line of ex biological evolution. could include similarities in DNA sequences, ar ice of structures in embryological developmen	vidence has relating to natomical structures, t.
	Content Limits <u>Students do not need</u> proteins, Occam's razo genes, molecular clock 	<u>to know</u> : specific genetic mutations, specific genetic mutations, specific genetic mutation of ortholo or (maximum parsimony), formation of ortholo x, Neutral theory.	enetic disorders, specific gous and paralogous
Science Vocabulary Students are Expected to Know	Amino acids, cladogram, comparative anatomy, DNA sequencing, electrophoresis, embryology, evolution, fossil record, gene flow, genetic drift, mutation, natural selection, nucleotides, sedimentary layers, species, descent with modification, homologous structures, evolutionary tree, analogous structures.		
Science Vocabulary Students are Not Expected to Know	Phylogenetic, phylogeny, phylogenetic tree, taxonomy, cladistics, vestigial structures, convergent evolution, analogous, endemic, phylocode, sister taxa, basal taxon, polytomy, homoplasy, molecular systematics, monophyletic, parphyletic, polyphyletic, maximum parsimony, orthologous genes, paralogous genes, horizontal gene transfer.		
	1	Phenomena	
Context/ Phenomena	 Some example phenomena for Red pandas look a bit about whether red par might include pictures structures. Hermit crabs live in sh hermit crabs either as Crawfish look just like Fossil records of an ex This structure is also for 	r HS-LS4-1: like bears and a bit like raccoons. Task Stateme ndas are better classified as raccoons or bears. , DNA information, embryological information, ells, like oysters, but look like crabs. Provide ev mollusks (like oysters) or arachnids (like crabs) lobster, but smaller. Which came first, the lobs tinct hooved animal show a thickened knob of pund in modern whales and helps them hear u	ent: Provide evidence Stimulus material , and homologous vidence classifying). ster or the crawfish? bone in its middle ear. nderwater.

	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Analyze and interpret scientific evidence from multiple scientific/technical sources including text, diagrams, charts, symbols, mathematical representations that support common ancestry among organisms and/or biological evolution.*
2.	Evaluate the validity/relevance/reliability of scientific evidence about biological evolution.
3.	Identify relationships or patterns in scientific evidence at macroscopic and/or microscopic scales.*
4.	Describe the specific evidence needed to support an explanation about how organisms share a common ancestor.
5.	Synthesize an explanation that incorporates the scientific evidence from multiple sources.

Performance	HS-LS4-2		
Expectation	Construct an explanation based on evidence that the process of evolution primarily results from four		
	factors: (1) the potential for	a species to increase in number, (2) the heritable gen	etic variation of
	individuals in a species due t	o mutation and sexual reproduction, (3) competition	for limited
	resources, and (4) the prolife	eration of those organisms that are better able to surv	vive and reproduce
	in the environment.		
Dimensions	Constructing Explanations	LS4.B: Natural Selection	Cause and Effect
	and Designing Solutions	Natural selection occurs only if there is both 1)	 Empirical
	 Construct an explanation 	variation in the genetic information between	evidence is
	based on valid and	organisms in a population and 2) variation in the	required to
	reliable evidence	expression of that genetic information—that is,	differentiate
	obtained from a variety	trait variation—that leads to differences in	between cause
	of sources (including	performance among individuals.	and correlation
	investigations models	154 C: Adaptation	and to make
	theories simulations	• Evolution is a consequence of the interaction of	cialitis about
	and neer review) and the	four factors: 1) the notential for a species to	and effects
	assumption that theories	increase in number 2) the genetic variation of	and effects.
	and laws that describe	individuals in a species due to mutation and	
	the natural world	sexual reproduction, 3) competition for an	
	operate today as they	environment's limited supply of the resources	
	did in the past and will	that individuals need in order to survive and	
	continue to do so in the	reproduce, and 4) the ensuing proliferation of	
	future.	those organisms that are better able to survive	
		and reproduce in that environment.	
Clarifications	Clarification Statements		
and Content	 Emphasis is on using 	evidence to explain the influence each of the four fac	ctors has on the
Limits	number of organism	s, behaviors, morphology, or physiology in terms of a	bility to compete
	for limited resources and subsequent survival of individuals and adaptation of species.		
	 Examples of evidence could include mathematical models such as simple distribution graphs 		
	and proportional reasoning.		
	Content Limits		
	Assessment does no	t include other mechanisms of evolution, such as gen-	etic drift, gene
	flow through migration, and co-evolution.		
	 Students do not nee 	u to know: Haruy-weinberg equation.	
Science	Beneficial change detriment	tal change distribution emergence gene frequency	hiotic abiotic
Vocabulary	advantageous diverge proli	feration hottleneck effect island effect geographic	solation founder
Students Are	effect, recombination	rendition, bothericek encet, island encet, geographici.	
Expected to			
Know			
Science	Hardy-Weinberg equilibrium	, biotechnology, relative fitness, directional selection	disruptive
Vocabularv	selection, stabilizing selectio	n, heterozygote advantage, frequency-dependent sel	ection, prezvgotic
Students Are	barriers, postzygotic barriers	5.	, , 0
Not Expected	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
to Know			
		Phenomena	
Context/	Some example phenomena	for HS-LS4-2:	

Phenomena	 Cane toads introduced to Australia in the 1930s have evolved to be bigger, more active, and have longer legs. In the late 1990s, a resurgence of bedbug outbreaks began. Bedbugs are now much harder to kill with thick, waxy exoskeletons, faster metabolism, and mutations to block certain insecticides. Skinks living in cooler regions give live birth, while those living in warm coastal areas lay eggs. A butterfly parasite found on the Samoan Islands destroyed the male embryos of blue moon 	
	butterflies, decreasing the male population to only 1%. After a year, males had rebounded to 40% of the population	
This Perfo	prmance Expectation and associated Evidence Statements support the following Task Demands.	
	Task Demands	
 Describe the herit competi and repr causality 	the cause-and-effect relationship between: (1) the potential for a species to increase in number, (2) able genetic variation of individuals in a species due to mutation and sexual reproduction, (3) tion for limited resources, and (4) the proliferation of those organisms that are better able to survive oduce in the environment, and change in species over time. This may include indicating directions of <i>y</i> in a model or completing cause-and-effect chains.	
 Describe a specie and sexu that are may be 	2. Describe, identify, or select evidence supporting or contradicting a claim about the role of (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment in causing the phenomenon. The evidence may be evidence generated by the students in the simulation or selected from provided data.	
Given ar environr	i appropriate explanation for a phenomenon, predict the effects of subsequent changes in nental conditions on the population.	
4. Use evid for a spe mutatio organisr	ence to construct an explanation of the changes in species over time as a result of (1) the potential cies to increase in number, (2) the heritable genetic variation of individuals in a species due to n and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those ns that are better able to survive and reproduce in the environment. *(SEP/DCI/CCC)	
5. Identify for the c	and justify additional pieces of evidence that would help distinguish between competing hypotheses hanges in species over time.	

Performance	HS-LS4-3		
Expectation	Apply concepts of statistics and probability to support explanations that organisms with an		
	advantageous herita	ble trait tend to increase in proportion to organisms lacking t	his trait.
Dimensions	Analyzing and	LS4.B: Natural Selection	Patterns
	 Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. 	 Natural selection Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation —that leads to differences in performance among individuals. The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. LS4.C: Adaptation Natural selection leads to adaptation that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. The differential survival and reproduction of organisms in a population that have an advantageous heritable trait lead to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. Adaptation also means that the distribution of traits in a population can change when conditions change. 	 Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
Clarifications and Content Limits	Clarification Statements Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations		
2			
	 Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations. <u>Students do not need to know</u>: sexual selection, kin selection, artificial selection, frequency-dependent selection. 		
Science Vocabulary Students are Expected to Know	Fitness, gene, allele, directional selection, diversifying (disruptional selection), stabilizing selection, standard deviation, vestigial structure.		
Science Vocabulary Students are Not Expected to Know	Hemizygous, aneuploidy, intragenomic conflict, sexual dimorphism, balanced polymorphism, apostatic selection.		
		Phenomena	
Context/	Example phenomen	a for HS-LS4-3:	
Phenomena			

	 Green Treefrogs (<i>Hyla versicolor</i>) are abundant in the wetlands of Florida where no Gray Treefrogs (<i>Hyla cinerea</i>) are observed. In the wooded areas of New York, only Gray Treefrogs are observed. In the Amazon rainforest, a kapok trees (<i>Ceiba pentandra</i>) measures 200 feet in height, approximately 30 feet above the rest of the canopy. A school of mummichog fish (<i>Fundulus heteroclitus</i>) is found in the 6°C waters of the Chesapeake Bay. These fish are normally found in warmer climates, like the 21°C waters of Kings Bay, Georgia.
	 A population of the fish <i>Poecilia mexicana</i> lives in the murky hydrogen-sulfide (H2S)-rich waters in southern Mexico that would kill the same species of fish living in clear freshwaters only 10 km away.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
1.	Describe or identify patterns or relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population due to natural selection/selection pressure(s).*
2.	Make predictions about the trait frequency or distribution in a population due to the presence/absence or addition/removal of selection pressure(s) in the environment (including Hardy-Weinberg-based predictions about changes in allele/trait frequency/magnitude NOT based on calculations).*
3.	Organize and/or arrange (e.g., using illustrations and/or labels) data, or summarize data to provide evidence for an explanation of the effect of selection on a population.
4.	Analyze, evaluate, estimate, calculate, and/or construct an equation to describe the change in the distribution of a trait in a population over time due to selection pressure(s).
5.	Identify statistical anomalies or outliers for a trait or a population that are outside the expected range (for example, Joe DiMaggio's hitting streak, tossing 10 consecutive heads on a fair coin, etc.) which may or may not be quickly removed due to selection pressure.
6.	Use statistical analysis to calculate changes in traits in a population over time to provide evidence for an explanation of the relationship between a trait's occurrence and its prevalence in the population at different points in time.
7.	Identify explanations for a change in a traits frequency and/or distribution in a population over time that can be supported by patterns or relationships in data.

Performance	HS-LS4-4		
Expectation	Construct an explanation based on evidence for how natural selection leads to adaptation of		
Dimensions	 Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 	 LS4.C: Adaptation Natural selection leads to adaptation; that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. The differential survival and reproduction of organisms in a population that has an advantageous, heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Clarifications and Content Limits	 Clarification Statement Emphasis is on using data to ecosystems (such as ranges or geographic barriers, or evolu over time, leading to adaptat Content Limits Assessment does not include 	provide evidence for how specific biotic and of seasonal temperature, long-term climate o tion of other organisms) contribute to a char tion of populations.	abiotic differences in change, acidity, light, nge in gene frequency
Science Vocabulary Students Are Expected to Know	Beneficial change, detrimental change, distribution, emergence, gene frequency, gene, biotic, abiotic, advantageous, diverge, proliferation, sexual reproduction, bottleneck effect, island effect, geographic isolation, gene flow, genetic drift, founder effect.		
Science Vocabulary Students Are Not Expected to Know	Hardy Weinberg Equilibrium, bioted selection, stabilizing selection, hete barriers, postzygotic barriers.	chnology, relative fitness, directional selectio rozygote advantage, frequency-dependent s	on, disruptive selection, prezygotic
		Phenomena	
Context/ Phenomena	 Some example phenomena for HS-I Following a four-year droug the season. A new antibiotic is discover treated by the antibiotic not A small population of Italian neighboring island. After se populated the island, and t Following climatic changes, spring. 	LS4-4: ght in California, field mustard plants are fou red. Within ten years, many bacterial disease o longer respond to treatment (e.g., MRSA). n wall lizards that feed mainly on insects is ir everal decades, the lizards are found to have heir diet is now mostly vegetation. the European Great Tit bird begins laying eg	and to flower earlier in es that were previously ntroduced to a thrived and heavily ggs earlier in the
This Perf	ormance Expectation and associated	Evidence Statements support the following	Task Demands

	Task Demands
1.	Organize or summarize the given data or evidence of population characteristics, environmental characteristics, and/or the relationships between them.
2.	Generate or construct graphs or tables of data to highlight patterns within the given data.
3.	Describe the cause and effect relationship between natural selection and adaptation using evidence. This may include assembling descriptions from illustrations or lists of options and distractors, or indicating directions of causality in a model or completing cause and effect chains.
4.	Describe, identify, or select evidence supporting or contradicting a claim about the role of adaptation in causing the phenomenon. The evidence may be generated by the students in a simulation.
5.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes in environmental conditions on the population.
6.	Use evidence to construct an explanation of the adaptation of a species through natural selection. Evidence can be described, identified, or selected/assembled from lists with distractors. Explanations can be written, assembled by manipulating the components of a flow chart or model, or assembled from lists of options that include distractors. Options and distractors should not be single words or short phrases; rather, they should be complete thoughts that, when correctly emplaced within a sentence or paragraph, work to provide evidence of a coherent train of thought.*
7.	Identify and justify additional pieces of evidence that would help distinguish among competing hypotheses.

Performance	HS-LS4-5		
Expectation	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1)		
	increases in the number of individuals of some species, (2) the emergence of new species over time,		
	and (3) the extinction of	other species.	
Dimensions	 Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. 	 LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes extinction—of some species. Species become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species' evolution is lost. 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Clarifications	Clarification Statements	5	
and Content	Emphasis is on d	letermining cause and effect relationships for how ch	nanges to the
Limits	environment su	ch as deforestation, fishing, application of fertilizers,	drought, flood, and the
	rate of change o	f the environment affect distribution or disappearan	ce of traits in species.
	Content Limits		
	Students do not	need to know: Hardy Weinberg Equation.	
Science	Beneficial change, detrir	nental change, distribution, emergence, gene freque	ncy, biotic, abiotic,
Vocabulary	advantageous, diverge, mutation, proliferation, bottleneck effect, island effect, geographic isolation,		
Students Are	founder effect, recombination, microevolution, gene flow, speciation, hybrid		
Expected to			
Know	Diatashualagu valatiya f		hilining coloction
Vocabulary	beterozygote advantage	frequency dependent selection, disruptive selection, sta	postzygotic barriers
Students Are	average beterozygotic duvantage, frequency dependent selection, prezygotic barriers, posizygotic barriers,		
Not Expected	selection, neutral variation, balancing selection		
to Know	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		Phenomena	
Context/	Some example phenome	ena for HS-LS4-5:	
Phenomena	PCB pollution in	the Hudson River wiped out many fish species, but t	he Atlantic tomcod
	thrives there (re	sults 1 and 3).	
	Ine population (1800s to four st	of Greater Prairie Unickens in Illinois decreased from	millions of birds in the
	In 1681 the dod	hidi 50 birds in 1995 (result 5).	of invasive species
	(result 3).		or invasive species
	 In 1988, the Ora 	nge-Spotted Filefish went extinct in response to war	mer ocean
	temperatures (r	esult 3).	
This Perfo	ormance Expectation and	associated Evidence Statements support the following	ig Task Demands.
		Task Demands	

1	Based on the provided data, identify, describe, or construct a claim regarding the effect of changes to the environment on the (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.		
2	Sort inferences about the effect of changes to the environment on (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species into those that are supported by the data, contradicted by the data, outliers in the data, or neither, or some similar classification.*		
3	Identify patterns of information/evidence in the data that support correlative/causative inferences about the effect of changes to the environment on the (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.*		
4	 Construct an argument and/or explanation using scientific reasoning drawing on credible evidence to explain the effect of changes to the environment on the (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. 		
5	Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of changes to the environment on the (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.		
6	Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of changes to the environment on (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.*		
Performance	HS-LS4-6		
----------------	--	--	---
Expectation	Create or revise a s	imulation to test a solution to mitigate adverse impacts of hum	nan activity on
	biodiversity.		Γ
Dimensions	Using Mathematics and Computational Thinking • Create or revise a simulation of a phenomenon, designed device, process, or system.	 LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. LS4.D: Biodiversity and Humans Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus, sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts (<i>secondary</i>). Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical, and in making a persuasive presentation to a client about how a given design will meet his or her needs (<i>secondary</i>). 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Clarifications	Clarification Staten	nents	
and Content	Emphasis is	on designing solutions for a proposed problem related to thre	eatened or
Limits	endangered	d species, or to genetic variation of organisms for multiple spec	cies.
	 The simulation information wariation wariat	tion should model the effect of human activity and provide quant about the effect of solutions on threatened or endangered sp ithin a species.	antitative becies or to genetic
	Content Limits <u>Students do</u> decay) 	<u>o not need to know</u> : Calculus/advanced mathematics (e.g., exp	onential growth and

Science Vocabulary Students Are Expected to Know	Anthropogenic, efficient, overexploitation, urbanization, acidification, deforestation, concentration, radiation, greenhouse gas, surface runoff, civilization, consumption, mass wasting, urban development, per-capita, degradation, pollutant, best practice, cost-benefit, extract, regulation
Vocabulary Students Are Not Expected	logistic population growth, ecological footprint, ecosystem services, extinction vortex, minimum viable population, effective population size, critical load.
to Know	Dhanamana
	Phenomena
Phenomena	 Some example phenomena for HS-LS4-6: The habitat of the Florida Panther is only 5% of its former range, causing the species to become endangered.
	 The café marron plant is critically endangered due to massive habitat destruction on the Island of Rodrigues in the Indian Ocean, as a result of deforestation for agricultural use. The population of Atlantic Bluefin Tuna has declined by more than 80% since 1970 due to overfishing. In the past 120 years, about eighty percent of suitable orangutan habitat in Indonesia has been lost from expansion of oil palm plantations. At the same time, the estimated number of orangutans on Borneo, an island in Indonesia, has declined from about 230,000 to about 54,000.
This Perfe	ormance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Use data on biodi	to calculate or estimate the effect of a solution on mitigating the adverse impacts of human activity versity.
2. Illustrate mitigatir	e, graph, or identify features or data that can be used to determine how effective a solution is for ng the adverse impacts of human activity on biodiversity.
 Estimate activity of 	or infer the properties or relationships that lead to mitigation of the adverse impacts of human on biodiversity, based on data.
4. Compile sorting c	the data needed for an inference about the impacts of human activity on biodiversity. This can include out the relevant data from the given information.
5. Using giv	ven information, select or identify the criteria against which the solution should be judged.
6. Using a s to the so	imulator, test a proposed solution and evaluate the outcomes; may include proposing modifications lution.*

*In order to satisfy this PE, the student <u>must</u> use a simulator. Therefore, this task demand must always be used.

Performance	HS-ESS1-1			
Expectation	Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear			
	fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.			
Dimensions	Developing and using	ESS1.A: The Universe and Its Stars	Scale, Proportion, and	
	models	 The star called the sun is changing and 	Quantity	
	 Develop a model 	will burn out over a lifespan of	• The significance of a	
	based on evidence to	approximately 10 billion years.	phenomenon is	
	illustrate the		dependent on the scale,	
	relationships between	PS3.D: Energy in Chemical Processes and	proportion, and quantity	
	systems or between	Everyday Life	at which it occurs.	
	components of a	 Nuclear Fusion processes in the center of 		
	system.	the sun release the energy that ultimately		
		reaches Earth as radiation. (secondary)		
Clarifications	Clarification Statements			
and Content	 Emphasis is on th 	e energy transfer mechanisms that allow ener	rgy from nuclear fusion in the	
Limits	sun's core to read	ch Earth.		
	 Examples of evide 	ence for the model include observations of the	masses and lifetimes of other	
	stars, as well as t	the ways that the sun's radiation varies due t	o sudden solar flares ("space	
	weather"), the 11	I-year sunspot cycle, and non-cyclic variations	over centuries.	
	Content Limits			
	 Assessment does 	not include details of the atomic and sub-ato	omic processes involved with	
	the sun's nuclear	tusion.		
Calanaa			V rediction ID rediction	
Science	sunspor cycle, solar maximum, solar minimum, sunspors, solar nares, UV radiation, IK radiation,			
Students are	convection, nuclear fusion, core, atmosphere, solar storm, luminosity			
Students are				
Know				
Science	nhotosphere chromosph	ere corona coronal mass ejections		
Vocabulary				
Students are				
Not Expected				
to Know				
		Phenomena		
Context/	Some example phenome	na for HS-ESS1-1:		
Phenomena	• The babitable zone in our solar system currently contains both Farth and Mars. In the future			
	it will contain a d	ifferent set of planets.		
	• The sun's current	surface temperature is about 5,800 K. In 5 bill	ion years, the sun's surface	
	temperature will	cool to 3,500 K.	, ,	
	• The sun is 40% br	ighter, 6% larger than 5% hotter than it was 5	billion years ago.	
	 The Earth's atmo 	sphere will contain more water vapor and the	oceans will contain less	
	water in a few bil	lion years.		
This Perfo	ormance Expectation and a	ssociated Evidence Statements support the fol	lowing Task Demands.	
	Task Demands			
		Task Demands		
1. Organize	e and/or arrange (e.g., usin	Task Demands g illustrations and/or labels), summarize or ma	ike inferences about data to	

:	2.	Identify patterns or evidence in the data that supports inferences about the lifespan of the sun or the transfer of energy from the sun to the earth.
:	3.	Select or identify from a collection of potential model components, including distractors, the components needed for a model that illustrates the lifespan of the sun or the transfer of energy from the sun to the earth.
	4.	Construct or complete a model capable of illustrating the lifespan of the sun or the transfer of energy from the sun to the earth.
	5.	Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that are relevant to the lifespan of the sun or the transfer of energy from the sun to the earth.
	6.	Identify missing components, relationships, or other limitations of the model.
	7.	Make predictions about the effects of changes in the sun or in the transfer of energy from the sun to the earth. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.

Performance	HS-ESS1-2		
Expectation	Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra,		
	motion of distant galaxies, and composition of matter in the universe.		
Dimensions	Constructing	ESS1.A: The Universe and Its Stars	Energy and
	Explanations and	• The study of stars' light spectra and brightness is	Matter
	Designing Solutions	used to identify compositional elements of stars,	 Energy cannot
	 Construct an 	their movements, and their distances from Earth.	be created or
	explanation based on	• The Big Bang theory is supported by observations of	destroyed-only
	valid and reliable	distant galaxies receding from our own, of the	moved between
	evidence obtained	measured composition of stars and non-stellar gases,	one place and
	from a variety of	and of the maps of spectra of the primordial	another place,
	sources (including	radiation (cosmic microwave background) that still	between objects
	students' own	fills the universe.	and/or fields, or
	investigations,	• Other than the hydrogen and helium formed at the	between
	theories,	time of the Big Bang, nuclear fusion within stars	systems.
	simulations, peer	produces all atomic nuclei lighter than and including	
	review) and the	iron, and the process releases electromagnetic	
	assumption that	energy. Heavier elements are produced when certain	
	theories and laws	massive stars achieve a supernova stage and	
	that describe the	explode.	
	natural world		
	operate today as	PS4.B: Electromagnetic Radiation	
	they did in the past	 Atoms of each element emit and absorb 	
	and will continue to	characteristic frequencies of light. These	
	do so in the future.	characteristics allow identification of the presence of	
		an element, even in microscopic quantities.	
		(secondary)	
Clarifications	Clarification Statements	5 	
and Content	Emphasis is on t	he astronomical evidence of the redshift of light from gala	axies as an
Limits	indication that t	he universe is currently expanding, the cosmic microwave	background as the
	remnant radiatio	on from the Big Bang, and the observed composition of or	dinary matter of
	the universe, pr	imarily found in stars and interstellar gases (from the spec	ctra of
	electromagnetic	c radiation from stars), which matches that predicted by the	he Big Bang theory
	(3/4 nydrogen a	nu 1/4 nenum).	
Science	Recessional velocity, gal	axy star galaxy cluster spectrum spectra wavelength fi	requency. Doppler
Vocabulary	Effect. redshift. blueshif	t, light years, big bang theory, helium, emission, absorptic	on
Students are	,	,,,,,, ,, ,,	
Expected to			
Know			
Science	Cosmological redshift. H	ubble Law, photometric redshift. spectroscopy	
Vocabularv		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example Phenome	ena for HS-ESS1-2:	
Phenomena	The farthest kno	own galaxy has a greater recessional velocity than the fart	hest known quasar.

	 The spectrum of NGC450 shows a greater abundance of elements heavier than helium than does the spectrum of NGC60 Two galaxy clusters observed in opposite parts of the sky both contain galaxies with about the same chemical composition: 75% hydrogen and 25% helium. A galaxy in the constellation Cetus is moving away from us at a different speed than another galaxy in the adjacent constellation Pisces.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail organizing, interpreting and analyzing data, making calculations, and sorting relevant from irrelevant information or features.
2.	Identify evidence that supports and/or does not support the Big Bang Theory.
3.	Describe, select, or identify components of the Big Bang Theory supported by given evidence.
4.	Use an explanation of the Big Bang Theory to predict how the universe will continue to change over time.
5.	Construct an explanation based on evidence that explains how particular aspects of the Big Bang Theory are supported by empirical observations of the universe.
6.	Identify and justify additional pieces of evidence that would help distinguish among competing hypotheses.

Performance	HS-ESS1-3			
Expectation	Communicate scientific ideas	about the way stars, over their life cycle, produce	e elements.	
Dimensions	Obtaining, Evaluating, and	ESS1.A: The Universe and Its	Energy and Matter	
	Communicating	Stars	 In nuclear 	
	Information	 The study of stars' light spectra and 	processes, atoms	
	 Communicate scientific 	brightness is used to identify compositional	are not conserved,	
	ideas (e.g. about	elements of stars, their movements, and	but the total	
	phenomena and/or the	their distances from Earth.	number of protons	
	process of development	• Other than the hydrogen and helium formed	plus neutrons is	
	and the design and	at the time of the Big Bang, nuclear fusion	conserved.	
	performance of a	within stars produces all atomic nuclei		
	system) in multiple	ngitter than and including iron, and the		
	formats (including orally.	Heavier elements are produced when certain		
	graphically, textually, and	massive stars achieve a supernova stage and		
	mathematically).	explode.		
		- F		
Clarifications	Clarification Statements			
and Content	Emphasis is on the way	ay nucleosynthesis, and therefore the different ele	ements created, varies	
Limits	as a function of the m	nass of a star and the stage of its lifetime.		
	Content Limits		· · · · ·	
	Details of the many of th	different nucleosynthesis pathways for stars of dif	tering masses are not	
	assessed.	ad nucleosynthesis reactions:		
	Hydrogen fuses in	nto helium		
	Helium fuses into	carbon		
	Carbon fuses into	o oxygen		
	 Oxygen fuses into 	o silicon		
	Silicon fuses into	iron		
	Exclude complex nucl	leosynthesis reactions and details:		
	 CNO cycle 			
	 Neutron-capture 	(r-process and s-process)		
	 Proton-capture: I 	Rp-process		
	 Photo-disintegral 	tion: P-process	f l	
	o Other details abo	out radiation of particles – focus on conservation c	or nucleons	
Science	main sequence, nucleosynthe	esis, nuclear reactions, fission, fusion, nucleons, pr	roton. neutron	
Vocabulary	gamma rays, neutrinos, red g	iant, blue giant, white dwarf, planetary nebular, s	upernova, supernova	
Students are	remnant, globular cluster, op	en, exothermic reactions, endothermic reactions,	, emissions spectrum,	
Expected to	absorption spectrum, emissic	on lines, absorption lines, H-R Diagram		
Know				
Science	Neutron-capture, proton-cap	ture, photo-disintegration, CNO cycle, radiogenes	is	
Vocabulary				
Students are				
Not Expected				
		Phenomena		
Context/	Some example phenomenon	for HS-FSS1-3		
Phenomena				

	 Two larger stars, Spica and Pollux are eight times larger than the sun. However, Spica is 420 times brighter and 6 times more massive than Pollux. Procyon is a 1.5 solar mass star and is 8 times brighter than the sun. Aldebaran is a star of similar mass but Aldebaran is 425 times brighter than the sun. The stars in a globular cluster (old low mass stars) are red and show few absorption lines in their spectra while the stars in an open cluster (young high mass stars) are blue and show many absorption lines in their spectra. In the core of some stars, carbon can fuse into neon, sodium or magnesium.
Thi	is Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. III	lustrate, model or make calculations involving the nucleosynthesis process in stars of different mass,
m	nathematical models.
2. Co ag	ompare and contrast the nucleosynthesis processes of stars of different mass, different luminosity, different ge or different evolutionary stage using graphs, diagrams, text and mathematical models.
3. N cł	lake predictions about nucleosynthesis processes given changes or differences in other stellar naracteristics.
4. Id	lentify and communicate evidence supporting an explanation regarding the relationship between stellar roperties and age, in particular how those stellar properties change over time.
5. Sy th	ynthesize an explanation regarding the relationship between stellar properties and age, in particular how nose stellar properties change over time.

Performance	HS-ESS1-4			
Expectation	Use mathematical or computational representations to predict the motion of orbiting objects in the			
	solar system.			
Dimensions	Using Mathematical and	ESS1.B: Earth and the Solar System	Scale, Proportion, and	
	Computational Thinking	 Kepler's laws describe common 	Quantity	
	 Use mathematical or 	features of the motions of orbiting	 Algebraic thinking is used to 	
	computational	objects, including their elliptical paths	examine scientific data and	
	representations of	around the sun. Orbits may change	predict the effect of a	
	phenomena to	due to the gravitational effects from,	change in one variable on	
	describe explanations.	or collisions with, other objects in the	another (e.g., linear growth	
		solar system.	vs. exponential growth).	
Clarifications	Clarification Statements	the state of the s		
and Content	Emphasis is on Ne	wtonian gravitational laws governing orbita	al motions, which apply to	
Limits	numan-made sate	llites as well as planets, moons, rings, aster	olds, and comets.	
	Ine term "satellite another object	e can be used to describe both man-made	and natural objects that orbit	
	another object.			
	Content Limits			
	Mathematical rep	resentations for the gravitational attraction	of bodies and Kepler's Laws of	
	orbital motions sh	ould not deal with systems of more than tw	vo bodies, nor involve calculus.	
	Comparing differe	nt orbiting bodies is acceptable as long as e	each system only contains two	
	bodies (example:	satellite 1 orbiting Earth compared to satell	ite 2 orbiting Earth).	
	Students will be given by a student of the second sec	ven the Law of Gravitation to make calcula	tions but should know/apply	
	Kepler's laws cond	eptually. These laws are:		
	1. Orbits are elli	otical;		
	2. Line connectir	ng orbiting body and parent body sweeps or	ut equal areas in equal time;	
	3. (Orbital period	d) ² is proportional to (semi-major axis distan	nce) ³ .	
Science	Gravitation, orbit, revoluti	on, rotation, period, semi-major axis, eccer	ntricity, semi-minor axis, focus,	
Vocabulary	foci, ellipse, gravitational of	constant, astronomical unit, satellite		
Students are				
Expected to				
Know				
Science	Aphelion, perihelion, angu	lar momentum		
Vocabulary				
Students are				
Not Expected				
		Phenomena		
Context/	Some sample phenomena	for HS-ESS1-4:		
Phenomena	The International	Space Station orbits Earth at an altitude of 1	250 miles with a speed of 5	
	miles per second	while a global positioning system satellite o	rbits ten times as far and half as	
	fast.			
	China's Tiangong s	pace station's orbital speed can no longer l	be controlled. It is expected to	
	burn up in the atn	hosphere as it falls to the Earth.	-	
	The shape of Com	et Shoemaker-Levy 9's orbit changed just b	efore it collided with Jupiter in	
	1994.			

	 In 100 years, the moon will be about half a meter further from Earth and Earth's rotation will be 2 miliseconds slower.
Th	is Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. M	lake simple calculations using given data to calculate or estimate the motion of orbiting objects (satellites).
2. Ill in	ustrate, graph, or identify relevant features or data that can be used to calculate, estimate or make ferences about the motion of satellites.
3. Ca m	alculate or estimate properties of motions for a satellite and the object it orbits based on data from one or ore sources.
4. Se so	elect or construct relationships between a satellite and the object it orbits based on data from one or more ources.
5. Co sa	ompile, from given information, the particular data needed for a particular inference about the motion of a Itellite. This can include sorting out the relevant data from the given information.
6. Co	onstruct or identify an inference that can be made based on data from one or more sources.

Performance	HS-ESS1-5		
Expectation	Evaluate evidence of the past and current movements of continental and oceanic crust and the		
	theory of plate tector	nics to explain the ages of crustal rocks.	1
Dimensions	Engaging in	ESS1.C: The History of Planet Earth	Patterns
	Argument from	 Continental rocks, which can be older than 4 billion years, 	Empirical
	Evidence	are generally much older than the rocks of the ocean floor,	evidence is
	 Evaluate evidence 	which are less than 200 million years old.	needed to
	behind currently		identify
	accepted	ESS2.B: Plate Tectonics and Large-Scale System Interactions	patterns.
	explanations or	• Plate tectonics is the unifying theory that explains the past	
	solutions to	and current movements of the rocks at Earth's surface and	
	merits of	bistory (secondary)	
	arguments	Thistory. (secondary)	
	angumento.	PS1.C: Nuclear Processes	
		Spontaneous radioactive decays follow a characteristic	
		exponential decay law. Nuclear lifetimes allow radiometric	
		dating to be used to determine the ages of rocks and other	
		materials. (secondary)	
Clarifications	Clarification Stateme	nts	1
Limits	Emphasis is o Examples incl	on the ability of plate tectonics to explain the ages of crustal rocks.	
Littics		(a result of plate spreading) and the ages of North American co	ntinental crust
	decreasing w	ith distance away from a central ancient core of the continental	plate (a result
	of past plate	interactions).	
	Content Limits		
	 Students do r 	not need to calculate radioactive decay rates.	
	<u>Students do r</u>	not need to know: names of supercontinents, names of fault line	es, names of
	tectonic plate	25	
Science	Convergence diverge	nce sedimentary metamorphic igneous volcanic crust mant	le, core, mid
Vocabulary	ocean ridge, trench		,
Students are			
Expected to			
Know			
Science	Isotope, anticline, syr	ntacline	
Vocabulary			
Not Expected			
to Know			
		Phenomena	
Context/	Some example pheno	omena for HS-ESS1-5:	
Phenomena	Rocks near Bi	Idudalur Iceland were formed about about 16 million years ago	, rocks near
	Geysir Iceland	d were formed about 3.3 million years ago.	
	The patterns	of magnetic reversals on the youngest continental rock column	s are the same
	as the patter	n of magnetic reversals found at the center of the Mid-Atlantic r	idge.
	 Iceland gains 	about 1.8 centimeters of land surface per year.	

	• From 1996 to 2016, Mount St. Elias has gotten 0.08 meters taller.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Based on the provided data or information, identify the explanation that could explain the age difference in continental and oceanic crust.
2.	Identify and/or explain the claims, evidence, and reasoning supporting the explanation that tectonic plates have moved over time.
3.	Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of the movement of tectonic plates and/or the ages of rocks.
4.	Evaluate the strengths and weaknesses of a claim to explain the theory of plate tectonics and the ages of rocks.
5.	Analyze and/or interpret evidence and its ability to support the explanation that plate tectonics or radioactive decay can determine the age of a rock.
6.	Provide and/or evaluate reasoning to support the explanation that volcanoes, mountains and earthquakes are formed/caused as a result of plate tectonics

Performance	HS-ESS1-6		
Expectation	Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other		
	planetary surfaces to construct an account of Earth's formation and early history.		
Dimensions	Constructing	ESS1.C: The History of Planet Earth	Stability and
	Explanations and	 Although active geologic processes, such as plate 	Change
	Designing Solutions	tectonics and erosion, have destroyed or altered most of	Much of
	 Apply scientific 	the very early rock record on Earth, other objects in the	science deals
	reasoning to link	solar system, such as lunar rocks, asteroids, and	with
	evidence to the	meteorites, have changed little over billions of years.	constructing
	claims to assess	Studying these objects can provide information about	explanations
	the extent to	Earth's formation and early history.	of how things
	which the		change and
	reasoning and	PS1.C: Nuclear Processes	how they
	data support the	 Spontaneous radioactive decays follow a characteristic 	remain stable.
	explanation or	exponential decay law. Nuclear lifetimes allow	
	conclusion.	radiometric dating to be used to determine the ages of	
		rocks and other materials. (secondary)	
Clarifications	Clarification Stateme	nts	
and Content	 Emphasis is o 	n using available evidence within the solar system to reconstru	ct the early history
Limits	of Earth, whi	ch formed along with the rest of the solar system 4.6 billion ye	ars ago.
	Examples of e	evidence include the absolute ages of ancient materials (obtair	ned by radiometric
	dating of met	ceorites, moon rocks, and Earth's oldest minerals), the sizes an	id compositions of
	solar system	objects, and the impact cratering record of planetary surfaces.	
Seienee	Diata tastanias, radia	motrie dating isotone, continental crust accorie crust lithern	horo
Vecabulary	Plate tectonics, radio	metric dating, isotope, continential crust, oceanic crust, ithosp	nere,
Students are	core mantle nuclear	, bedrock, ocean trench, sedimentation, convection current, a	icient core, inner
Expected to			
Know			
Science	Nebular hypothesis, planetesimals, solar nebula, bolide impacts.		
Vocabulary			
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some sample phenor	nena for HS-ESS1-6:	
Phenomena	A thin section	n of a rock from western Australia is examined under a microsc	ope and elongate
	crystals are o	bserved.	
	A rock from E	arth and a rock from Mars are the same age.	
	When astron	auts returned to Earth with rocks from the moon, they were al	l very old. A rock
	found in the	Great Lakes Region of North America is very old, but rock foun	d in Iceland are all
	relatively you	ng. Meteor Crater is a large depression, with a depth of 170m,	, in an otherwise
	flat area of A	rizona.	
			-
This Perf	ormance Expectation a	nd associated Evidence Statements support the following Task	Demands.
lask Demands			
1. Articulat	te, describe, illustrate,	or select the relationships, interactions, and/or processes to be	explained. This
may ent	all sorting relevant from	n irrelevant information or features.	

2.	Express or complete a causal chain explaining Earth's formation and/or early history. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.*
3.	Identify evidence supporting the inference of causation that is expressed in a causal chain.
4.	Describe, identify, and/or select information needed to support an explanation about the formation of Earth and its early history.
5.	Construct an explanation based on evidence and scientific reasoning that explains the formation of Earth and its early history. *

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	HS-ESS2-1		
Expectation	Develop a model to illustrate how Earth's internal and surface processes operate at different spatial		
	and temporal scales to form continental and ocean-floor features.		
Dimensions	Developing and	ESS2.A. Earth Materials and Systems	Stability and
	Using Models	 Earth's systems, being dynamic and interacting, cause 	Change
	• Develop a	feedback effects that can increase or decrease the	 Change and rates
	model based on	original changes.	of change can be
	evidence to		quantified and
	illustrate the	ESS2.B. Plate Tectonics and Large-Scale System	modeled over
	relationships	Interactions	very short or very
	between	• Plate tectonics is the unifying theory that explains the	long periods of
	systems or	past and current movements of the rocks at Earth's	time. Some
	someonets of	surface and provides a framework for understanding its	system changes
	a system	geologic history.	
	a system.	• Plate movements are responsible for most of continental	
		rocks and minerals within Earth's crust	
Clarifications	Clarification Stater	nents	
and Content	Emphasis is	s on how the appearance of land features (such as mountains,	valleys, and
Limits	plateaus) a	nd sea floor features (such as trenches, ridges, and seamount	s) are a result of
	both const	ructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive
	mechanism	ns (such as weathering, mass wasting, and coastal erosion).	
	Contont Limits		
	• Students d	a not need to know: the details of the formation of specific ge	ographic features of
	Earth's surface.		ographic reatures of
Science	Tectonic uplift, seismic waves, feedback effect, irreversible, Earth's magnetic field, electromagnetic		
Vocabulary	radiation, inner core, outer core, mantle, continental crust, oceanic crust, sea-floor spreading,		
Students are	isotope, thermal convection, radioactive decay, rock composition, continental boundary, ocean		
Expected to	trench, recrystallization, nuclear, geochemical reaction, mass wasting		
Know			
Vocabulary	Geomorphology, anticline, syncline, monocline		
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some sample phen	omena for HS-ESS2-1:	
Phenomena	A limeston	e cliff that contains Cambrian-aged fossils extends several hur	dred feet above the
	surface of t	he ocean. A large section of the cliff has collapsed.	
	An oceanic	c trench 10,000 is meters below sea level. Inland, 200km away	r, a chain of active
	volcanoes i	s present.	10.000 was a stat
	• 1.8 DIIIION)	year old rocks in the black Hills of South Dakota are capped by	TO,OOO year old
	• A photogra	nt from March shows large Precambrian-aged nink granite by	ulder at the top of a
	 A processing from warch shows large Precambrian-aged pink granite boulder at the top of a 100 m tall hill. A photograph in April shows the same boulder sitting in a pile of soil and 		
	sediment ir	n the valley below the hill.	

	This Perf	ormance Expectation and associated Evidence Statements support the following Task Demands.
		Task Demands
1.	Select or are relev and eros and laye cycling (r identify from a collection of potential model components, including distractors, the components that vant for explaining the phenomenon. Components might include different rock types, rates of uplift sion, surface environments on Earth where these processes occur and where different rock types exist, rs within Earth where these processes occur. Sources of energy (radiation, convection) that drive the but <i>not</i> the creation of) matter should also be included as components.*
2.	Manipul act to re	ate the components of a model to demonstrate the changes, properties, processes, and/or events that sult in the phenomenon of Earth's internal and surface processes.
3.	Make pr properti from list	edictions about the effects of changes in the magnitude and/or rate of Earth's internal and surface es. Predictions can be made by manipulating model components, completing illustrations, or selecting s with distractors.
4.	Given m construc construc this caus	odels or diagrams of land features, internal and surface processes, identify factors that affect tive and destructive forces, feedback effects and how they vary in different scenarios OR identify the tive and destructive mechanisms that operate at different spatial and temporal time scales and how tes changes in the appearance of continental and ocean-floor features.
5.	Identify surface	missing components, relationships, or other limitations of the model of how Earth's internal and processes form continental and ocean-floor features.
6.	Describe continer surface floor fea	e, identify, or select the relationships among components of a model that describe the formation of ntal and ocean-floor features with respect to spatial and temporal variability in internal and external processes or explains how changes in these processes affect the formation of continental and ocean- tures.*
7.	Express processe of causa	or complete a causal chain explaining how changes in the flow of energy (interval vs. surface es) affect the formation of continental and ocean-floor features. This may include indicating directions lity in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.
*donate	s those to	sk demands which are deemed appropriate for use in stand-alone item development

opriate for use in stand-alone item development enotes those task demands which are deemed appr

Performance	HS-ESS2-2		
Expectation	Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to Earth's systems.		
Dimensions	Analyzing and	ESS2.A: Earth Materials and Systems	Stability and
Dimensions	 Analyzing and Interpreting Data Analyze data using tools, technologies and/or models (e.g. computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design. 	 Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.D: Weather and Climate The foundation for the Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into 	 Change Feedback (negative or positive) can stabilize or destabilize a system.
		space.	
Clarifications	Clarification Statements	i	
 and Content Examples should include climate feedbacks, such as: An increase in greenhouse gases causes a rise in global ice, which reduces the amount of sunlight reflected fro surface temperatures and further reducing the amount Loss of ground vegetation causes an increase in water i Damned rivers increase groundwater recharge, decrease increase coastal erosion Loss of wetlands causes a decrease in local humidity th extent. 		I include climate feedbacks, such as: in greenhouse gases causes a rise in global temperatures the educes the amount of sunlight reflected from Earth's surface peratures and further reducing the amount of ice. Ind vegetation causes an increase in water runoff and soil e ers increase groundwater recharge, decrease sediment tran stal erosion ands causes a decrease in local humidity that further reduc	hat melts glacial ce, increasing rosion nsport, and res the wetland
	Content Limits		
	Students do not	need to know:	
	 Specifically which gases are greenhouse gases. 		
	 Composition of the atmosphere 		
Science Vocabulary Students are Expected to Know	Ocean circulation, biosphere, feedback effect, atmospheric circulation, convection cycle, greenhouse gas, geoscience, sea level, mean surface temperature, methane		
Science Vocabulary Students are Not Expected to Know	Electromagnetic radiation, probabilistic, irreversible, geoengineering, ozone, pollutant, acidification		
		Phenomena	
Context/ Phenomena	 Some example phenome Farming causes to water runoff, wh Loss of wetlands As the Permafrogreenhouse gas, melting. 	ena for HS-ESS2-2: the loss of forest in the Amazon. This leads to an increase in hich leads to more forest loss. causes a decrease in local humidity that further reduces th st in the Artic melts, methane is released into the atmosph traps heat causing the Earth to heat up, leading to more P	n erosion and ne wetland extent. here. Methane, a ermafrost

	 Increased CO2 in the atmosphere warms the oceans. Warmer oceans take up less CO2 than cooler oceans, further increasing atmospheric temperature.
-	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Organize and/or arrange (e.g., using illustrations and/or labels), or summarize data to highlight trends, patterns, or correlations in how changes to Earth's surface can create feedbacks that affect Earth's systems.
2.	Generate/construct graphs, tables, or assemblages of illustrations and/or labels of data that document patterns, trends, or correlations in how changes to Earth's surface can create feedbacks that affect Earth's systems. This may include sorting out distractors.
3.	Use relationships identified in the data to predict how changing the Earth's surfaces affects the feedback loop.
4.	Identify patterns or evidence in the data that supports inferences about how the altering of Earth's surface will affect the Earth in the long term.

Performance	HS-ESS2-3		
Expectation	Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal		
	convection.		
Dimensions	Develop and	ESS2.A: Earth Materials and Systems	Energy and
	Using Models	 Evidence from deep probes and seismic waves, 	Matter
	 Develop a 	reconstructions of historical changes in Earth's surface and its	 Energy drives
	model based	magnetic field, and an understanding of physical and chemical	the cycling of
	on evidence to	processes lead to a model of Earth with a hot but solid inner	matter within
	illustrate the	core, a liquid outer core, a solid mantle and crust. Motions of	and between
	relationships	the mantle and its plates occur primarily through thermal	systems.
	between	convection, which involves the cycling of matter due to the	
	systems or	outward flow of energy from Earth's interior and gravitational	
	between	movement of denser materials toward the interior.	
	components of		
	a system.	ESS2.B: Plate Tectonics and Large-Scale System Interactions	
		 The radioactive decay of unstable isotopes continually 	
		generates new energy within Earth's crust and mantle,	
		providing the primary source of the heat that drives mantle	
		convection. Plate tectonics can be viewed as the surface	
		expression of mantle convection.	
		PS4.A: Wave Properties	
		• Geologists use seismic waves and their reflection at interfaces	
		between layers to probe structures deep in the planet	
		(secondary)	
Clarifications	Clarification State	ments	
and Content	Emphasis	is on both a one-dimensional model of Earth, with radial layers det	ermined by
Limits	density, and a three-dimensional model, which is controlled by mantle convection and the		
	resulting plate tectonics.		
	 Examples of evidence include maps of Earth's three-dimensional structure obtained from seismic waves, records of the rate of change of Earth's magnetic field (as constraints on 		
	convection in the outer core), and identification of the composition of Earth's layers from		
	high-press	sure laboratory experiments.	
Science	Convection radio	active inner core outer core isotone mantle seismic wave Geoch	nemical reaction
Vocabulary	geoscience molte	n rock Farth's elements Farth's internal energy sources geochem	ical cycle
Students are	tectonic unlift		
Expected to			
Know			
Science	Geoneutrino, primodial heat		
Vocabulary	- / F /		
, Students are			
Not Expected			
to Know			
	·	Phenomena	
Context/	Some example ph	enomena for HS-ESS2-3:	
Phenomena	The temp	erature of the water in a hot spring in Iceland is around 100°F.	The average air
	temperature in Iceland is about 52°F.		

	 The average heat flow from the Earth's interior is 80 mWm⁻². The heat flow of a volcano on Hawaii is ~400 mWm⁻². The total heat transfer from the Earth to space is 44 terawatts. Radioactive decay of unstable isotopes contributes 20 terawatts from Earth's interior. (KamLAND Collaboration, 2011). In the central valley of California, the temperature at 5 meters below the ground is 2°C warmer than the temperature at the surface. In northern Oregon near Mt. Hood, the temperature 5 meters underground is 10°C warmer than the temperature at the surface.
This P	erformance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1. Selec need and/	t or identify from a collection of potential model components, including distractors, the components ed to model the phenomenon. Components might include the structure of the Earth, the cycling of matter or energy, or instruments used to measure seismic waves.
2. Assei capal inclu	nble or complete, from a collection of potential model components, an illustration or flow chart that is ble of representing the structure and the flow of matter/energy from the Earth's interior. This <u>does not</u> de labeling an existing diagram.
3. Mani act to	pulate the components of a model to demonstrate the changes, properties, processes, and/or events that result in the phenomenon.
4. Make mani	predictions about the effects of changes in the cycling of matter and energy. Predictions can be made by pulating model components, completing illustrations, or selecting from lists with distractors.
5. Giver struc	models or diagrams of the earth's interior, identify the chemical and physical properties of the Earth's cure that cause the cycling of matter.
6. Ident	ify missing components, relationships, or other limitations of the model.
7. Desc withi	ibe, select, or identify the relationships among components of a model that describe the cycling of matter n Earth's interior.

Performance	HS-ESS2-4		
Expectation	Use a model to describe how variations in the flow of energy into and out of Earth's systems result		
	in changes in climate.		
Dimensions	Developing	ESS1.B: Earth and the Solar System	Cause and Effect
	 and Using Models Use a model to provide mechanistic accounts of phenomena. 	 Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt of the planet's axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on Earth. These phenomena cause a cycle of ice ages and other gradual climate changes. <i>(secondary)</i> ESS2.A: Earth Materials and Systems The geologic record shows that changes to global and regional climate can be caused by interactions among changes in the sun's energy output of Earth's orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur 	• Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
		 Vegetation, and numan activities. These changes can occur on a variety of timescales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. ESS2.D: Weather and Climate The foundation for Earth's global climate system is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems and this energy's re- radiation into space. 	
Clarifications	Clarification Sta	tements	
and Content Limits	 Example eruption solar ou its axis; Content Limits Assessm tempera distribut <u>Student</u> depletio 	Examples of the causes of climate change differ by time scale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition. t Limits Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution. <u>Students do not need to know:</u> chemical mechanisms of fossil fuel combustion or ozone depletion	
Science	Interdependenc	e, solar radiation, solar flare, biosphere, atmospheric circulation, o	ocean circulation,
Vocabulary	climatic patterns	sea level, glacier, atmospheric composition, hydrosphere, greenho	ouse gas, fossil
Students are	fuel, combustior	1	
Expected to			
Know			
Science	Acidification, cry	vosphere	
Vocabulary			
Students are			

Not Expected			
to Know			
	Phenomena		
Context/ Phenomena Some example phenomena for HS-ESS2-4: • Temperatures were warmer in 1990 than in the 5 previous years. In 1992 and 1993, the global temperatures were 1°F cooler than in 1991. (volcanic eruption of Mount Pinatubo) • 11,000 years ago large portions of the northern United States contained glaciers. Today, very little of this area contains glaciers. (changes to Earth's orbit) • Earth experiences 4 distinct seasons. Venus does not experience distinct seasons. (tilt of planet's axis) • 25,000 years ago, the level of carbon dioxide in the atmosphere was around 180 parts per million (norm). Today, around 180 parts per million (norm).			
This Perfo	ormance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
 Select o are relev redistrik 	 Select or identify from a collection of potential model components, including distractors, the components that are relevant for explaining the phenomenon. Components might include factors that affect the input, storage, redistribution, and output of energy in Earth's systems. 		
 Manipulate the components of a model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon of the flow of energy in Earth's systems. 			
3. Make pr	edictions about the effects of changes in energy flow on Earth's climate.		
4. Given m storage, that cau	4. Given models or diagrams of energy flow in Earth's systems, identify factors that affect energy input, output, storage, and redistribution and how they change in different scenarios OR identify the changes in energy flow that cause changes in Earth's climate.		
5. Identify systems	 Identify missing components, relationships, or other limitations of the model of energy flow in Earth's systems. 		
6. Describe of energ	e, identify, or select the relationships among components of a model that describe changes in the flow by in Earth's systems or explains how changes in energy flow affect climate.		
7. Express climate. diagram	or complete a causal chain explaining how changes in the flow of energy in Earth's systems affects This may include indicating directions of causality in an incomplete model such as a flow chart or , or completing cause and effect chains.		

Performance	HS-ESS2-5		
Expectation	Plan and conduct an investigation of the properties of water and its effects on Earth materials and		
	surface processes.		
Dimensions	Planning and Carrying Out	ESS2.C: The Roles of Water in	Structure and Function
	Investigations	Earth's Surface Processes	 The functions and
	 Plan and conduct an 	 The abundance of liquid water on 	properties of natural
	investigation individually and	Earth's surface and its unique	and designed objects
	collaboratively to produce data	combination of physical and	and systems can be
	to serve as the basis for	chemical properties are central to	inferred from their
	evidence, and in the design	the planet's dynamics. These	overall structure, the
	decide on types, how much, and	properties include water's	way their components
	accuracy of data needed to	exceptional capacity to absorb,	are shaped and used,
	produce reliable measurements	store, and release large amounts	and the molecular
	and consider limitations on the	of energy, transmit sunlight,	substructures of its
	precision of the data (e.g., the	expand upon freezing, dissolve and	various materials.
	number of trials, cost, risk,	transport materials, and lower the	
	time), and refine the design	viscosities and melting points of	
	accordingly.	rocks.	
Clarifications	Clarification Statements		and a variativ of calid
and Content	 Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide evidence for the connections between the hydrologic cycle and system 		
LIIIIIIS			
	Exemples of machanical in	wit as the rock cycle.	
	Examples of mechanical inv stream table, erosion using	vestigations include stream transportations	I frost wodging by the
	expansion of water as it fre		i nost wedging by the
	 Examples of chemical invest 	tigations include chemical weathering a	and recrystallization (by
	testing the solubility of diffe	erent materials) or melt generation (by	examining how water
	lowers the melting tempera	ature of most solids)	examining now water
	Content Limits		
	The abundance of liquid wa	ater on Earth's surface and its unique co	mbination of physical and
	chemical properties are cer	ntral to the planet's dynamics. These pro	operties include water's
	exceptional capacity to abs	orb, store, and release large amounts o	f energy; transmit
	sunlight; expand upon free:	zing; dissolve and transport materials; a	nd lower the viscosities
	and melting points of rocks		
Science	Viscosity, melting point, freezing po	oint, absorption, dissolve, hydrologic cyd	cle, rock cycle, stream
Vocabulary	transportation, stream deposition,	stream table, erosion, soil moisture con	tent, frost wedging,
Students are	chemical weathering, solubility, me	chanical erosion, heat capacity, density	, molecular structure,
Expected to	sediment, cohesion, polarity.		
Know			
Science			
Vocabulary			
Students are			
Not Expected			
to know		Dhanamana	

Context/Some example phenomena for HS-ESS2-5:PhenomenaIn a cave in Guam, sections of stalactites that formed during seasons of high rainfall or a lower ratio of the isotopes oxygen-18 to oxygen-16 than sections of the stalactites the formed during seasons of low rainfall.Wookey Hole Caves have about 4,000 meters of cave system in a rock formation.The Colorado River runs through the rock formation known as the Grand Canyon.			
This Per	I formance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
1. Identif	r from a list, including distractors, the materials/tools needed for an investigation of the properties of and its effects on Earth's materials and surface processes.		
2. Identif	 Identify the outcome data that should be collected in an investigation of the properties of water and its effects on Earth's materials and surface processes. 		
3. Evaluat and su	3. Evaluate the sufficiency and limitations of data collected to explain the effects of water on Earth's materials and surface processes.		
4. Make a on Eart	4. Make and/or record observations about the chemical and/or physical properties of liquid water and its effects on Earth's materials.		
5. Interpr surface	5. Interpret and/or communicate the data from an investigation of the effect of water on Earth's materials and surface processes.		
6. Explain	. Explain or describe the causal processes that lead to the observed effects of water.		
7. Select, water o	 Select, describe, or illustrate a prediction made by applying the findings from an investigation of the effects of water on Earth's materials and surface processes. 		

Performance	HS-ESS2-6		
Expectation	Develop a quantitative model to describe the cycling of carbon among the hydrosphere,		
	atmosphere, geosphere, a	nd biosphere.	
Dimensions Clarifications and Content Limits	 Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system. Clarification Statements Emphasis is on model Emphasis is on model the ocean, atmospolity living organisms. 	 ESS2.D Weather and Climate Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. deling biogeochemical cycles that include to here, soil, and biosphere (including humans) 	 Energy and Matter The total amount of energy and matter in closed systems is conserved. he cycling of carbon through s), providing the foundation for
	Content Limits <u>Students do not no</u> size by the flow ra 	eed to know: How to calculate the residence te, either in or out; how to calculate the bio	e time by dividing the reservoir mass in a given ecosystem.
Science Vocabulary Students are Expected to Know	Concentration, rate of trar basin, pool, accumulate, b organic, inorganic, biotic, a sequestered	nsfer/flow, pathway, hydrosphere, geosphe iomass, equilibrium, chemosynthesis, bypro abiotic, diffusion, decompose, decay, microl	re, biosphere, reservoir, sink, oduct, element, hydrocarbon, be, fungi, bacteria, sediments,
Science Vocabulary Students are Not Expected to Know	assimilation, residence time, facies, orogenic, strata, outgassing, LeChatelier's Principle		
		Phenomena	
Context/ Phenomena	 Some example phenomen Data indicates tha and release from t Even though trees accumulation in th Human activity rel year. However, sci dioxide into the at 	a for HS-ESS2-6: t higher levels of atmospheric carbon dioxic he soil. take up carbon dioxide from the atmosphe le soil of a North Carolina forest. eases more than 30 billion tons of carbon d entists estimate that Earth's soil releases ro mosphere than all human activities combin	le increase both carbon's input re, scientists find little carbon ioxide into the atmosphere per bughly nine times more carbon ed.
This Perfo	ormance Expectation and as	sociated Evidence Statements support the f	ollowing Task Demands.
1 Calasti	identify from a sellent's	lask Demands	
1. Select or mathem mathem might in	atical operators, including c atical operators, including c atically and/or quantitative clude/represent organisms	y model the phenomenon. Components and/ y model the phenomenon. Components an	cal variables, and/or or operators needed to d mathematical variables lical, physical, and/or biological

	processes, and reservoirs. Operators might include symbols for addition, subtraction, multiplication, division, etc.
2.	Assemble or complete, from a collection of potential model components, mathematical variables, and/or mathematical operators, an illustration or flow chart that is capable of mathematically and/or quantitatively representing how matter and energy are continuously transferred within and between organisms and their physical environment. This <u>does not</u> include labeling an existing diagram.
3.	Describe, select, or identify the mathematical and/or quantitative relationships among components of a model and/or mathematical variables that describe how matter and energy are continuously transferred within and between organisms and their physical environment.
4.	Manipulate the components of a mathematical and/or quantitative model to demonstrate the changes, properties, processes, and/or events that act to result in the phenomenon.
5.	Make predictions about the effects of changes in the rate at which materials or elements move from one reservoir or sphere to another. Predictions can be made by manipulating model components, mathematical variables, and/or mathematical formulas, completing illustrations, selecting from lists with distractors, or performing calculations given sufficient information to do so.
6.	Given mathematical and/or quantitative models or diagrams of how matter and energy are continuously transferred within and between organisms and their physical environment, identify the pathways of matter and/or energy transfer within an environment and how they change in each scenario OR identify the properties of the environment that cause changes in the transfer of matter and/or energy within that environment.
7.	Identify missing components, mathematical variables, mathematical and/or quantitative relationships, or other limitations of the mathematic and/or quantitative model.

Performance	HS-ESS2-7		
Expectation	Construct an argument based on evidence about the simultaneous coevolution of Earth's systems		
	and life on Earth.		
Dimensions	Engaging in	ESS2.D: Weather and Climate	Stability and
	Argument from	• Gradual atmospheric changes were due to plants and	Change
	Evidence	other organisms that captured carbon dioxide and	 Much of science
	 Construct an oral 	released oxygen.	deals with
	and written		constructing
	argument or	ESS2.E: Biogeology	explanations of
	counter-	 The many dynamic and delicate feedbacks between 	how things change
	arguments based	the biosphere and other Earth systems cause a	and how they
	on data and	continual co-evolution of Earth's surface and the life	remain stable.
	evidence.	that exists on it.	
Clarifications		INTS	a biasabara and tha
Limits	 Emphasis is d Earth's system 	on the dynamic causes, effects, and reedbacks between th	e biosphere and the
LITTICS	continuously	alters Earth's surface	ie, which in turn
	 Examples inc 	lude how photosynthetic life altered the atmosphere thro	ugh the production of
	oxygen whic	h in turn increased weathering rates and allowed for the	evolution of animal
	life: how mic	robial life on land increased the formation of soil, which in	turn allowed for the
	evolution of l	and plants; and how the evolution of corals created reefs	that altered patterns
	of erosion and deposition along coastlines and provided habitats for the evolution of new		
	life forms.		
	Content Limits		
	 Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth's other systems 		
	the biosphere	e interacts with all of Earth's other systems.	
Science	Plate tectonics, rock t	formation, geologic evidence, ocean basin, radioactive, ro	ck strata, time scale.
Vocabulary	continental boundary ocean trench sedimentation continental shelf crustal deformation crustal		
Students are	plate movement, fracture zone, convection, atmospheric composition, groundwater, igneous rock		
Expected to	metamorphic rock, sedimentary rock, water cycle, landslide, deposition, greenhouse gas, mass		
Know	wasting, molten rock	, surface runoff	
Science	Ecosystem services, Anthropocene, eutrophication, ecohydrology, geomorphology, heterogeneity		
Vocabulary			
Students are			
Not Expected			
to Know			
Content	Composition and a second	Phenomena Phenomena	
Context/	Some example prieric	Differid IOF FISS2-7:	million voars Fossils
THEHUITEIIa	of Tiktaalik If	our legged fish) one of the earliest land animals are four	nd in the rock lavers
	ahove Fsoner	matonteris	in the fock layers
	The annearan	nece of cyanobacteria is recorded in fossils that formed rou	ghly 3 5 hillion years
		Type banded iron formed roughly 1.8 to 2.7 hillion years	ago. It is
	1 uso. Jupenoi	Type survey non rorney rouging to to 2.7 billoff years	~~~····
1	characterized	by alternating red and grav layers of iron rich minerals a	nd silica rich minerals
	characterized	by alternating red and gray layers of iron rich minerals and hert beds in Aberdeenshire Scotland contain detailed forse	nd silica rich minerals.

	 <i>Cooksonia</i> pertoni fossils from about 430 million years ago show plants that were larger, spore bearing, and contained tissues that move water through the plant (vascular). In 2016 two-thirds of the Northern portion of the Great Barrier Reef experienced severe bleaching. The Great Barrier Reef prior to this event, was made up of corals with a variety of bright colors that attracted a variety of marine life. In 2016, the coral turned completely white and few fish inhabit the area where bleaching has occurred.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.
2.	Express or complete a causal chain explaining how Earth's systems coevolved simultaneously with life on Earth. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.
3.	Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of the simultaneous coevolution of Earth's systems and life on Earth. This may entail sorting relevant from irrelevant information or features.
4.	Construct or identify from a collection, including distractors, an explanation based on evidence that explains how Earth's systems coevolved simultaneously with life on Earth.*
5.	Describe, identify, and/or select information and/or evidence needed to support an explanation. This may entail sorting relevant from irrelevant information or features.
6.	Identify patterns or evidence in the data that support conclusions about the relationship between the evolution of life on Earth and Earth's systems.

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	HS-ESS3-1		
Expectation	Construct an explanation based on evidence for how the availability of natural resources,		
	occurrence of natural hazards, and changes in climate have influenced human activity.		
Dimensions	Constructing Explanations and	ESS3.A: Natural Resources	Cause and Effect
	Designing Solutions	 Resource availability has guided 	• Empirical evidence
	• Construct an explanation based on	the development of human	is required to
	valid and reliable evidence obtained	society.	differentiate
	from a variety of sources (including		between cause
	students' own investigations,	ESS3.B: Natural Hazards	and correlation
	models, theories, simulations, peer	 Natural hazards and other 	and make claims
	review) and the assumption that	geologic events have shaped the	about specific
	theories and laws that describe the	course of human history; [they]	causes and effects.
	natural world operate today as they	have significantly altered the	
	did in the past and will continue to	sizes of human populations and	
	do so in the future.	have driven human migrations.	
Clarifications	Clarification Statements		
and Content	 Examples of key natural resource 	es include access to fresh water (suc	h as rivers, lakes, and
Limits	groundwater), regions of fertiles	coils such as river deltas, and high conc	centrations of minerals
	and fossil fuels.		
	 Examples of natural hazards can 	be from interior processes (such as y	olcanic eruptions and
	earthquakes), surface processes	s (such as tsunamis, mass wasting a	and soil erosion). and
	severe weather (such as hurricanes, floods, and droughts)		
	 Examples of the results of changes in climate that can affect nonulations or drive mass 		
	migrations include changes to sea level, regional patterns of temperature and		
	precipitation and the types of c	rons and livestock that can be raised	
	Content Limits		
	 Students do not need to know: of 	listribution of specific resources	
Science	Renewable, non-renewable, mitigation,	economic cost.	
Vocabulary			
Students Are			
Expected to			
Know			
Science	Biome		
Vocabularv			
Students Are			
Not Expected			
to Know			
	Phen	omena	
Context/	Some example phenomena for HS-ESS3-	1:	
Phenomena	In 2001, 85% of Australians lived	within 50 km of the ocean.	
	There are large color newer plan	ts in the southern California desert. C	alifornia solar power
	 India dia la la la constructione 		
1	 There are large solar power plan had a capacity of 18,296 MW in 	2016. In the same year. New York Sta	te had a capacity of
	 There are large solar power plan had a capacity of 18,296 MW in 1 927 MW. 	2016. In the same year, New York Sta	te had a capacity of
	 There are large solar power plan had a capacity of 18,296 MW in 1 927 MW. As many as 1.5 million inhabitan 	2016. In the same year, New York Sta	te had a capacity of

	 After the eruption of Mt. Vesuvius in 79 AD, the city of Pompeii was completely buried in volcanic ash. The city was never reoccupied and was lost for more than 1,500 years.
This	Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
7. Art ma	culate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This y entail sorting relevant from irrelevant information or features.
8. Exp cha inc	ress or complete a causal chain explaining how resource availability/natural hazards/climate change drive nges in human society/population/migration. This may include indicating directions of causality in an omplete model such as a flow chart or diagram, or completing cause and effect chains.*
9. Ide	ntify evidence supporting the inference of causation that is expressed in a causal chain.
10. Us ha:	an explanation to predict the change in human /activity given a change in resource availability/natural ards/climate.
11. De	cribe, identify, and/or select information and/or evidence needed to support an explanation.
12. Co res	struct an explanation based on evidence that explains that the availability of natural purces/occurrence of natural hazards/changes in climate have influenced human activity.*

*denotes those task demands which are deemed appropriate for use in stand-alone item development.

Performance	HS-ESS3-2		
Expectation	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral		
	resources based on cost-benefit ratios.		
Dimensions	Engaging in Argument from	ESS3.A: Natural Resources	
	Evidence	• All forms of energy production and other resource	
	 Evaluate competing 	extraction have associated economic, social,	
	design solutions to a real-	environmental, and geopolitical costs and risks as	
	world problem based on	well as benefits. New technologies and social	
	scientific ideas and	regulations can change the balance of these factors.	
	principles, empirical		
	evidence, and logical	ETS1.B: Developing Possible Solutions	
	arguments regarding	When evaluating solutions, it is important to take	
	relevant factors (e.g.,	into account a range of constraints, including cost,	
	economic, societal,	safety, reliability, and aesthetics, and to consider	
	environmental, ethical,	social, cultural, and environmental impacts	
	considerations).	(secondary)	
Clarifications	Clarification Statements:		
and Content	Emphasis is on the se	inconvision recycling and rouse of recourses (such as minor	alc and
Limits	• Emphasis is on the co	le, and on minimizing impacts where it is not	
LITIUS	Examples include dev	veloping best practices for agricultural soil use, mining (for co	oal tar
	 Examples include dev sands and oil shales) 	and numping (for netroleum and natural gas). Science know	
	indicates what can ba	and pumping (for periorean and natural gas). Science know	Medge
		ippen in natural systems – not what should happen.	
Science	Renewable, non-renewable, r	nitigation, economic cost, irreversible, reversible, exponenti	ial,
Vocabulary logarithmic, basin, sustainability, recycle, reuse, species, societal, wetland, groundwater, met		metal,	
Students are consumption, per-capita, stabilize, fossil fuel, mining, conservation, extract, agriculture, timber		imber,	
Expected to fertile land, solar radiation, biotic, abiotic, depletion, extinction, economics, manufacturing,		ng,	
Know	technology,		
Science	Trigonometric, derivative, fee	dback, regulation, dynamic, aquifer, hydrothermal, geopolit	tical, oil
Vocabulary	shale, tar sand, urban plannin	ng, waste management, fragmentation	
Students are			
Not Expected			
to Know		Dhonomona	
Context/	Some example phenomena fo	nr HS-FSS3-2'	
Phenomena	• There is a tower in th	e middle of North Dakota with flames shooting out the top of	ofit
Thenomena	 In Pennsylvania a ma 	tch is struck next to a running water faucet and a large flam	e annears
	 On the Yangtze River 	in China, blades of an underwater turbine turn and generate	
	electricity		2
	 In the desert of Omar 	n, a farmer uses seawater to irrigate crops.	
		,	
Task Demands			
1. Articulat	te, describe, illustrate, or select	the relationships, interactions, and/or processes to be explained by the explain the second second second second	ained. This
may ent	ail organizing, interpreting and	analyzing data, making calculations, and sorting relevant fro	om
irrelevar	nt information or features.		
2. Identify	evidence that supports and/or	does not support the success of competing design solutions	; tor
develop	ing, managing, and utilizing ene	ergy and mineral resources based on cost-benefit ratios, soci	ietal needs
for that	resource, and associated enviro	onmental risks and benefits.	

- 3. Describe, select, or identify components of competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios supported by given evidence.
- 4. Evaluate the strengths of competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios, societal needs for that resources, and associated environmental risks and benefits.
- 5. Use an explanation of the design solutions for developing, managing, and utilizing energy and mineral resources to evaluate which design solution has the most preferred cost-benefit ratio.

*denotes those task demands which are deemed appropriate for use in stand-alone item development

Performance	HS-ESS3-3		
Expectation	Create a computational simulation to illustrate the relationships among the management of natural		
	resources, the sustainability of	of human populations, and biodiversi	ty.
Dimensions	Using Mathematics and	ESS3.C: Human Impacts of Earth	Stability and Change
	Computational Thinking	Systems	• Change and rates of change
	 Create a computational 	• The sustainability of human	can be quantified and modeled
	model or simulation of a	societies and the biodiversity	over very short or very long
	phenomenon, designed	that supports them require	periods of time. Some system
	device, process, or	responsible management of	changes are irreversible.
	system.	natural resources.	6
	,		
Clarifications	Clarification Statements		I
and Content	 Examples of factors t 	hat affect the management of natura	I resources include the costs of
Limits	resource extraction a	nd waste management, per-capita co	onsumption and development of
	new technologies.		
	Examples of factors t	hat affect human sustainability includ	de agricultural efficiency, levels of
	conservation, and ur	pan planning.	
		B	
	Content Limits		
	Assessment for comr	outational simulations is limited to us	ing provided multi-parameter
	programs or construc	ting simplified spreadsheet calculation	ons.
		0	
Science	Biosphere, geosphere, hydro	sphere, renewable, non-renewable, r	nitigation, economic cost,
Vocabulary	irreversible, reversible, expor	nential, logarithmic, basin, ecological,	biome, recycle, reuse, mineral,
, Students are	societal, wetland, consumption, per-capita, mining, conservation, extract, agriculture, timber, fertile		
Expected to	land, solar radiation, biotic, abiotic, depletion, extinction, manufacturing, technology		
Know			0. 0,
Science	Trigonometric, derivative, fee	edback, regulation, dynamic, aquifer,	hydrothermal, geopolitical, oil
Vocabulary	shale, tar sand, urban plannir	ng, waste management, fragmentatio	n
Students are			
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenomena for	or HS-ESS3-3:	
Phenomena	The number of birds	and other wildlife in an area decrease	es by 30% after a shopping mall is
	built in northern Calif	fornia.	
	Two 1,330 square-for	ot homes are side by side in northern	California. One has six solar
	panels on the roof, an	nd the other does not. During one mo	onth in June, the one with solar
	panels produces less	carbon dioxide than the other house	by174 kilograms.
	Beetles are present t	hroughout a forest. Chemicals are sp	rayed at intervals needed to
	control the beetles of	n one acre. Fifty years later, this acre	is the only part of the forest that
	has oak trees.		
	Three species of fish,	the Colorado squawfish, the roundta	ail chub, and the bonytail chub
	became extinct in the	e years immediately following constru	uction of the Glen Canyon Dam in
	Colorado.		
This Perfe	ormance Expectation and assoc	ciated Evidence Statements support t	he following Task Demands.
		Task Demands	

1.	Use data to calculate or estimate the effect of an action or solution on natural resources, the sustainability of human populations, and/or biodiversity.
2.	Illustrate, graph, or identify features or data that can be used to determine the effects of an action or solution on natural resources, the sustainability of human populations, and/or biodiversity.
3.	Estimate or infer the effects of an action or solution that affects natural resources, the sustainability of human populations, and/or biodiversity.
4.	Compile the data needed for an inference about the impacts of an action or solution on natural resources, the sustainability of human populations, and/or biodiversity. This can include sorting out the relevant data from the given information (or choosing relevant inputs for a simulation).
5.	Using given information, select or identify the criteria against which the solution should be judged.
6.	Using a simulator, test a proposed action or solution and evaluate the outcomes; may include proposing modifications to the action or solution.*
7.	Evaluate and/or critique models, simulations, or predictions in terms of identifiable limitations and whether or not they yield realistic results.

*In order to satisfy this PE, the student must use a simulator. Therefore, this task demand must always be used.

ExpectationEvaluate or refine a technol systems.DimensionsConstructing Explanations and Designing Solutions • Design or refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling reso global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, is stabilize, mining, conservati abiotic, depletion, extinctio shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. In • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. In • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and stabilion ganizing, interpreting and stabilion and association by 10 million U.S. In • Mixed Paper recycli	HS-ESS3-4		
DimensionsConstructing Explanations and Designing Solutions • Design or refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.Element considerations.Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resou global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, it stabilize, mining, conservati abiotic, depletion, extinctioContext/ PhenomenaTrigonometric, derivative, for shale, tar sand, urban plann 1.1 quadrillion Btu of by 10 million U.S. h • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and resources or sele may entail organizing, interpreting and conservation and association	Evaluate or refine a technological solution that reduces impacts of human activities on natural		
DimensionsConstructing Explanations and Design or refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resou global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, i stabilize, mining, conservati abiotic, depletion, extinctio KnowContext/ PhenomenaTrigonometric, derivative, fo shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. h • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting an	systems.		
Explanations and Designing Solutions • Design or refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.EClarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling reson global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, it stabilize, mining, conservati abiotic, depletion, extinctio knowContext/ PhenomenaSome example phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. hr • Mixed Paper recycli1.Articulate, describe, illustrate, or sele may entail organizing, interpreting and recycling, interpreting and recycling and comp 1.1 quadrillion Btu of by 10 million U.S. hr	ESS3.C: Human Impacts on Earth Systems	Stability and Change	
Designing Solutions• Design or refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resor global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, is stabilize, mining, conservati abiotic, depletion, extinctio knowScience Vocabulary Students are Not Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plant students are Not Expected to KnowContext/ PhenomenaSome example phenomena • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. ho • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and students are	 Scientists and engineers can make major 	 Feedback (negative 	
 Design or refine a solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations. Clarifications and Content Limits Clarification Statements Examples of data or pollutants released, use (such as for urb) Examples for limitin and recycling reson global temperature Science Vocabulary Students are Expected to Know Science Vocabulary Students are Not Expected to Know Context/ Phenomena Some example phenomena	contributions by developing technologies that	or positive) can	
Solution to a complex real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.EClarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling reson global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, it stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and recycling and comp 1.1 expected • Mixed Paper recycli	produce less pollution and waste and that	stabilize or destabilize	
real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.EClarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resor global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, p stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Not Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. h • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and 	preclude ecosystem degradation.	a system.	
based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.•Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resou global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, it stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Not Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. h • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Mixed Paper recycli1.Articulate, describe, illustrate, or sele may entail organizing, interpreting and 	, , ,		
knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations.Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resor global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, 1 stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. In • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and 	ETS1.B Developing Possible Solutions		
generated sources of evidence, prioritized criteria, and tradeoff considerations.Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resor global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, it stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. In • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Mixed Paper recycli1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and respecting and comp sing organizing, interpreting and recycling and comp	• When evaluating solutions, it is important to		
OutputClarifications and Content LimitsClarification Statements and Content LimitsClarification Statements and Content LimitsClarification Statements and Content LimitsScience Vocabulary Students are Expected to KnowScience Vocabulary Students are Expected to KnowScience Vocabulary Students are Expected to KnowScience Vocabulary Students are Expected to KnowScience Not Expected to KnowContext/ PhenomenaPhenomenaContext/ PhenomenaSome example phenomena a by 10 million U.S. hr by 10 million U.S. hr<	take into account a range of constraints.		
Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resord global temperatureScience VocabularyRenewable, non-renewable logarithmic, basin, recycle, resord stabilize, mining, conservati abiotic, depletion, extinctio Students are Expected to KnowScience VocabularyTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. hr • Mixed Paper recyclicThis Performance Expectation and assord may entail organizing, interpreting and resord or polytometers or sele may entail organizing, interpreting and resord or polytometers	including cost. safety, reliability, and		
Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resor global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, it abiotic, depletion, extinctio KnowScience Vocabulary Students are Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. he • Mixed Paper recycliContext/ PhenomenaSome example phenomena • Mixed Paper recycliThis Performance Expectation and assor may entail organizing, interpreting and resolution in the presence of the state of the	aesthetics, and to consider social, cultural.		
Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling reson global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, is stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Not Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recyclioContext/ PhenomenaSome example phenomena • Mixed Paper recyclio1.Articulate, describe, illustrate, or sele may entail organizing, interpreting and	and environmental impacts (secondary)		
Clarifications and Content LimitsClarification Statements • Examples of data or pollutants released, use (such as for urb) • Examples for limitin and recycling resor global temperatureScience Vocabulary Students are Expected to KnowRenewable, non-renewable logarithmic, basin, recycle, r stabilize, mining, conservati abiotic, depletion, extinctio KnowScience Vocabulary Students are Expected to KnowTrigonometric, derivative, for shale, tar sand, urban plann • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recyclioContext/ PhenomenaSome example phenomena • Mixed Paper recyclio1.Articulate, describe, illustrate, or sele may entail organizing, interpreting and respected to shale, interpreting and			
and Contentand ContentLimits• Examples of data or pollutants released, use (such as for urb • Examples for limitin and recycling resord global temperatureScienceRenewable, non-renewable logarithmic, basin, recycle, it students are Expected to KnowScienceRenewable, non-renewable logarithmic, basin, recycle, it students, depletion, extinctio KnowScienceTrigonometric, derivative, for shale, tar sand, urban plann Students are Not Expected to KnowContext/ PhenomenaSome example phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. hor • Mixed Paper recycliThis Performance Expectation and association1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and stale interpreting and selected			
Limits pollutants released, use (such as for urb Examples for limitin and recycling resor global temperature Science Renewable, non-renewable logarithmic, basin, recycle, r Students are Expected to abiotic, depletion, extinctio Know Science Trigonometric, derivative, for shale, tar sand, urban plann Students are Not Expected to Know Context/ Phenomena Some example phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recycli This Performance Expectation and assoc	in the impacts of human activities could include th	ne quantities and types of	
Science Renewable, non-renewable Vocabulary logarithmic, basin, recycle, non-renewable Students are stabilize, mining, conservati Expected to abiotic, depletion, extinctio Know Science Science Trigonometric, derivative, fe Vocabulary shale, tar sand, urban plann Students are Shale, tar sand, urban plann Students are Some example phenomena Not Expected Some example phenomena Not Expected Mixed Paper recycli This Performance Expectation and association Mixed paper recycli This Performance Expectation and association 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and complexity	the impletes of human detivities could include the changes to biomass and species diversity or are	al changes in land surface	
 Examples for limitin and recycling reson global temperature Science Vocabulary Students are stabilize, mining, conservati abiotic, depletion, extinctio Know Science Trigonometric, derivative, for Science Vocabulary Students are Not Expected Know Context/ Phenomena Some example phenomena Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. ho Mixed Paper recyclio This Performance Expectation and asson Articulate, describe, illustrate, or sele may entail organizing, interpreting and 	han development agriculture and livestock or su	urface mining)	
Science Renewable, non-renewable Vocabulary logarithmic, basin, recycle, non-renewable Students are stabilize, mining, conservati Expected to abiotic, depletion, extinctio Know Science Science Trigonometric, derivative, for Science Trigonometric, derivative, for Students are shale, tar sand, urban plann Students are Not Expected Not Expected Some example phenomena Phenomena Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. ho Mixed Paper recycli This Performance Expectation and association and associ	ng future impacts could range from local efforts (such as reducing reusing	
Science Renewable, non-renewable Vocabulary logarithmic, basin, recycle, non-renewable Students are stabilize, mining, conservati Expected to abiotic, depletion, extinctio Know Science Science Trigonometric, derivative, fe Vocabulary shale, tar sand, urban plann Students are Not Expected Not Expected Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. he • Mixed Paper recycli This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	ng future impacts could range nom local enorts (s	lutions (such as altering	
ScienceRenewable, non-renewableVocabularylogarithmic, basin, recycle, rStudents arestabilize, mining, conservatiExpected toabiotic, depletion, extinctioKnowTrigonometric, derivative, feScienceTrigonometric, derivative, feVocabularyshale, tar sand, urban plannStudents areNot ExpectedNot ExpectedSome example phenomenaContext/Some example phenomenaPhenomena• Recycling and comp1.1 quadrillion Btu doby 10 million U.S. he• Mixed Paper recycliThis Performance Expectation and asset1. Articulate, describe, illustrate, or selemay entail organizing, interpreting and	as by making large changes to the atmosphere or		
ScienceRenewable, non-renewableVocabularylogarithmic, basin, recycle, recycle	es by making large changes to the atmosphere of	oceanj.	
Vocabulary Intervention of the energy able Vocabulary logarithmic, basin, recycle, is stabilize, mining, conservatie Expected to abiotic, depletion, extinctio Know Science Science Trigonometric, derivative, for shale, tar sand, urban plann Students are Not Expected Not Expected shale, tar sand, urban plann Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. hor • Mixed Paper recycli This Performance Expectation and association a	e mitigation economic cost irreversible reversi	ale exponential	
Students are stabilize, mining, conservati Expected to abiotic, depletion, extinctio Know Science Science Trigonometric, derivative, fe Vocabulary shale, tar sand, urban plann Students are Not Expected Not Expected Some example phenomena Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. he • Mixed Paper recycli This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	logarithmic hasin recycle reuse societal wetland metal consumption per-capita hiodiversity		
Statuents are Stabilize, mining, conservation Expected to abiotic, depletion, extinction Science Trigonometric, derivative, for Vocabulary shale, tar sand, urban plann Students are Not Expected Not Expected Some example phenomena Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recycli This Performance Expectation and asso 1. 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	stabilize mining conservation extract agriculture timber fertile land solar radiation biotic		
Expected to abiotic, depletion, extinction Know Science Science Trigonometric, derivative, for Vocabulary shale, tar sand, urban plann Students are Not Expected Not Expected to Know Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. ho • Mixed Paper recycli This Performance Expectation and association 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	ad to abiotic depletion extinction economics manufacturing technology		
Science Trigonometric, derivative, ferentiation Science Trigonometric, derivative, ferentiation Vocabulary shale, tar sand, urban plann Students are Not Expected Not Expected to Know Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. here • Mixed Paper recycli • Mixed Paper recycli This Performance Expectation and association • Some example, illustrate, or sele may entail organizing, interpreting and • Recycling and comp	on, economics, manufacturing, technology		
Vocabulary shale, tar sand, urban plann Students are shale, tar sand, urban plann Not Expected to Know Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. ho • Mixed Paper recycli • Mixed Paper recycli This Performance Expectation and asso • not sele 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	Trigonometric derivative feedback regulation dynamic aquifer hydrothermal geopolitical cit		
Students are Sinale, tal sand, droan plant Students are Not Expected to Know Some example phenomena Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. he • Mixed Paper recycli This Performance Expectation and asso 1. 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and selection and selection.	ning waste management fragmentation	inial, geopolitical, oli	
Not Expected to Know Context/ Phenomena • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. he • Mixed Paper recycli This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	ning, waste management, nagmentation		
Not Expected to Know Context/ Phenomena • Recycling and comp 1.1 quadrillion Btu o by 10 million U.S. ho • Mixed Paper recycli This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and			
Context/ Phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recyclion This Performance Expectation and assoce 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and			
Context/ Some example phenomena Phenomena • Recycling and comp 1.1 quadrillion Btu or by 10 million U.S. how • Mixed Paper recyclion This Performance Expectation and associate • Recycling and comp 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and components	Phenomena		
Phenomena Recycling and comp 1.1 quadrillion Btu of by 10 million U.S. ho • Mixed Paper recyclion This Performance Expectation and assonnt 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and the second seco	a for HS-ESS3-4:		
Articulate, describe, illustrate, or sele may entail organizing, interpreting and comp 1.1 quadrillion Btu o by 10 million U.S. ho Mixed Paper recycli 1.1 quadrillion Btu o by 10 million U.S. ho o Mixed Paper recycli	nosting almost 87 million tons of municipal solid	waste saved more than	
This Performance Expectation and asso Articulate, describe, illustrate, or sele may entail organizing, interpreting an	of energy: roughly equivalent to the same amou	nt of energy consumed	
 Mixed Paper recycli This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting an 	ouseholds in a year	int of energy consumed	
This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting and	ling saves the equivalent of 165 gallons of gasolin		
This Performance Expectation and asso 1. Articulate, describe, illustrate, or sele may entail organizing, interpreting an	ing saves the equivalent of 105 galons of gason		
 Articulate, describe, illustrate, or sele may entail organizing, interpreting an 	sociated Evidence Statements support the followi	ng Task Demands.	
 Articulate, describe, illustrate, or sele may entail organizing, interpreting an 	Task Demands	0	
may entail organizing, interpreting an	ect the relationships, interactions, and/or process	ses to be explained. This	
, , , , , , , , , , , , , , , , , , , ,	nd analyzing data, making calculations, and sortir	ng relevant from	
irrelevant information or features.	, , , , , , , , , , , , , , , , , , , ,	-	
2. Identify evidence that supports and/o	or does not support the success of the technolog	ical solution that	
reduced impacts of human activities of	on natural systems.		
irrelevant information or features.	Task Demands ect the relationships, interactions, and/or process nd analyzing data, making calculations, and sortin	ses to be explained. This ng relevant from	

3.	Describe, select, or identify components of the impacts of human activities on natural systems supported by given evidence.							
4.	Use an explanation of the impacts of human activities on natural systems to explain the technological solution.							
5.	Identify or select the information needed to support an explanation of the impacts of human activities on natural systems.							
6.	Using given information about the effects of human activities on natural systems, select or identify criteria against which the solution should be judged.							
7.	Using given information about the effects of human activities on natural systems, select or identify constraints that the solution must meet.							
8.	Evaluate the criteria and constraints, along with trade-offs, for a proposed or given solution to resolve or improve the impact of human activities on natural systems.							
9.	Using given data, propose a potential solution to resolve or improve the impact of human activities on natural systems.							
10.	Using a simulator, test a proposed solution to resolve or improve the impact of human activities on natural systems, biodiversity and evaluate the outcomes.							
11.	Evaluate and/or revise a solution to resolve or improve the impact of human activities on natural systems, and evaluate the outcomes							
Performance	HS-ESS-3-5							
---	--	--	---	--	--	--	--	--
Expectation	Analyze geoscience data and the results from global climate models to make an evidence-based							
	forecast of the current rate of	f global or regional climate change and	associated future impacts on					
	Earth's systems.							
Dimensions	 Analyzing and Interpreting Data Analyze data using computational models in order to make valid and reliable scientific claims. 	 ESS3.D: Global Climate Change Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts. 	 Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. 					
Clarifications and Content Limits	Clarification Statements Examples of evidence (such as precipitation glacial ice volumes, o 	, for both data and climate model outp and temperature) and their associated r atmosphere and ocean composition).	uts, are for climate changes I impacts (such as sea level,					
	Content LimitsAssessment is limited	to one example of a climate change an	d its associated impacts.					
Science	Orientation, probabilistic, red	Orientation, probabilistic, redistribute, volcanic ash, concentration, electromagnetic radiation,						
Vocabulary	radiation, sea level, geochem	radiation, sea level, geochemical reaction, geoscience, greenhouse gas, atmospheric change,						
Students are	biosphere, global temperatur	biosphere, global temperature, ice core, methane, glacier						
Expected to								
Science	Anthronogenic absorption sr	ectrum determinant NOX Carbon For	otorint					
Vocabulary			, princ,					
Students are								
Not Expected								
to Know								
		Phenomena						
Context/	Some example phenomena fo	or HS-ESS3-5:						
Phenomena	The model prediction	ns for the Great Lakes region of the Unit	ted States consist of increased					
	precipitation of 5-309	% during the spring and decreased preci	ipitation of 5-10% in the summer.					
	Concentrations of CO	² under the higher emissions scenario f	or 2100 could reach as high as					
	850 parts per million	(ppm).						
	 Global warming of 2° 	C is predicted by the year 2050						
	The model mean glob	al temperature change for a high emiss	sions scenario is 4-6°					
This Perf	ormance Expectation and assoc	ciated Evidence Statements support the	e following Task Demands.					
		Task Demands						
1. Organize	e and/or arrange (e.g., using illເ	ustrations and/or labels), or summarize	data to highlight trends,					
patterns systems	, or correlations in global or rep.	gional climate models and their associa	ted future impacts on Earth's					
2. Generat	e/construct graphs, tables, or a	assemblages of illustrations and/or labe	ls of data that document					
patterns	s, trends, or correlations in glob	al or regional climate models to forecas	st regional climate change and					
the asso	the associated future impacts on Earth's systems. This may include sorting out distractors.							
3. Use rela	tionships identified in the data	to forecast the current rate of global or	r regional climate change and					
how it w	how it will affect Earth's systems.							

4. Identify patterns or evidence in the data that supports inferences about how the changing of global or regional climates will affect Earth's systems in the long term.

This page was intentionally left blank.

Performance	HS-ESS-3-6						
Expectation	Use a computational representation to illustrate the relationships among Earth systems and how						
	those relationships	are being modified due to human activity.					
Dimensions	Using	ESS2.D: Weather and Climate	Systems and System				
DIMENSIONS	Mathematics and Computational Thinking • Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.	 Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. <i>(secondary)</i> ESS3.D: Global Climate Change Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities. 	 Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. 				
		and are mounica in response to numan activities.					
Clarifications and Content Limits	 Clarification Statements Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations. Content Limits Assessment does not include running computational representations but is limited to using the published results of scientific computational models. 						
Science Vocabulary Students are Expected to Know	Orientation, probabilistic, redistribute, volcanic ash, concentration, electromagnetic radiation, radiation, sea level, geochemical reaction, geoscience, greenhouse gas, atmospheric change, biosphere, global temperature, ice core, methane, glacier						
Science Vocabulary Students are Not Expected to Know	Anthropogenic, absorption spectrum, determinant, NOX, Carbon Footprint,						
		Phenomena					
Context/	Some example phe	nomena for HS-ESS3-6:					
Phenomena	 Beetles are present throughout a forest. Chemicals are sprayed at intervals needed to control the beetles on one acre. Fifty years later, this acre is the only part of the forest that has oak trees. In July 2016, the size of the hypoxic area due to algae blooms in the Chesapeake Bay in late June was the second smallest since 1985. 						
This Perf	l ormance Expectation	and associated Evidence Statements support the following	z Task Demands.				

	Task Demands
1	. Use data to calculate or estimate the effect of human activity on Earth systems.
2	 Illustrate, graph, or identify features or data that can be used to determine the relationships among Earth systems and how human activity is affecting those relationships.
3	. Estimate or infer the effects of human activity on Earth systems.
4	. Compile the data needed for an inference about the impacts of human activity on Earth systems. This can include sorting out the relevant data from the given information (or choosing relevant inputs for a simulation).
5	 Using a simulator, test a prediction and evaluate the outcomes. This may include proposing modifications to the action to mitigate or the solution to the effect(s) of human activity on Earth systems.
6	 Evaluate and/or critique models, simulations, or predictions in terms of identifiable limitations and whether or not they yield realistic results.

Appendix 2-C

Style Guide for Science Items

Cambium Assessment (formerly AIR Assessment)

Three-Dimensional Science Assessment Style Guide

Modified from the Smarter Balanced Style Guide

3-11-2022

Note: The presentation of the sample items and selections in this document approximates but does not exactly reflect the appearance of the test content that students will view on the computer screen. The final presentation of content will depend on the user interface (UI) of the online delivery system.

Style Guide Abbreviations						
Abbreviation	Spelled-Out Term					
СВТ	computer-based testing					
CMOS	Chicago Manual of Style					
СМҮК	cyan-magenta-yellow-black (a four-color model used in printing)					
CR item	constructed-response item					
Dpi	dots per inch					
JPEG	Joint Photographic Experts Group (a format for compressing images used for print or screen					
PBT	print-based testing					
PNG	portable network graphics (a format using lossless compression for images used for screen presentation)					
RGB	red-green-blue (a three-color model used in screen presentation)					
SR item	selected-response item					
TEI	technology-enhanced item					
TIFF	tagged image file format (a format for compressing images used for print presentation)					
UI	user interface					

Table 1. Abbreviations used in Style Guide

Table of Contents

Part I: Global Style Conventions	4
A. Computer-Based Testing	5
B. General Font and Alignment Specifications	7
C. Stimulus Specifications	8
D. Interaction Types	9
E. Graphics in Items	15
F. Excerpts and Citations	
G. Scoring Assertion Specifications	19
H. Exemplar Conventions.	20
1. Option Rationales (Formative, specific projects only)	
J. Paper Style	23
R. Helened Editorial Styles	
Part II: Specific Style by Interaction Type	33
A. Multipart Items	
B. Multiple Selection (Multi-Select) Interactions	35
C. Edit Task Inline Choice (ETC) Interactions	
D. Table Interactions	3/
E. Rospin Posponso Interactions	
G Simulation Interactions	40
H External Conv Interactions	
F. Equation (EQ) Editor Interactions	
F. Data Exploration Interactions (TUVA Graphs)	
Part III, Number Treatment Style Conventions	40
Part III: Number Treatment Style Conventions	49
Part III: Number Treatment Style Conventions.	49 50
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns	49 50 53 54
Part III: Number Treatment Style Conventions. A. Treatment of Numbers	49 50 53 54 57
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Craphic Size	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements. B. Graphic Size C. Graphic Colors	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements. B. Graphic Size C. Graphic Colors D. Common Graphic Elements. F. Photographs and Baster Images.	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements. B. Graphic Size C. Graphic Colors D. Common Graphic Elements. E. Photographs and Raster Images. F. Graphs	
Part III: Number Treatment Style Conventions A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images F. Graphs G. Tables and Charts	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images F. Graphs G. Tables and Charts H. Coordinate Grids	49 50 53 54 57 58 59 63 65 66 66 69 71 76 80
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images. F. Graphs G. Tables and Charts H. Coordinate Grids I. Other Types of Graphics	49 50 53 54 57 58 59 63 65 66 69 71 76 80 82
Part III: Number Treatment Style Conventions. A. Treatment of Numbers . B. Equations / Expressions and Patterns . C. Units of Measure . D. Preferred Language . Part IV: Graphic Specifications . A. Text Elements. B. Graphic Size . C. Graphic Colors . D. Common Graphic Elements . E. Photographs and Raster Images. F. Graphs. G. Tables and Charts . H. Coordinate Grids . I. Other Types of Graphics. J. Animations.	49 50 53 54 57 58 59 63 65 66 66 69 71 76 80 82 84
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images F. Graphs. G. Tables and Charts H. Coordinate Grids I. Other Types of Graphics J. Animations.	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements. B. Graphic Size C. Graphic Colors D. Common Graphic Elements. E. Photographs and Raster Images. F. Graphs. G. Tables and Charts H. Coordinate Grids I. Other Types of Graphics J. Animations.	49 50 53 54 57 58 59 63 63 65 66 69 71 76 80 82 84 85 86
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images. F. Graphs. G. Tables and Charts H. Coordinate Grids J. Other Types of Graphics J. Animations.	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements. B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images. F. Graphs. G. Tables and Charts H. Coordinate Grids J. Other Types of Graphics J. Animations.	
Part III: Number Treatment Style Conventions. A. Treatment of Numbers B. Equations / Expressions and Patterns C. Units of Measure D. Preferred Language Part IV: Graphic Specifications A. Text Elements B. Graphic Size C. Graphic Colors D. Common Graphic Elements E. Photographs and Raster Images. F. Graphs. G. Tables and Charts H. Coordinate Grids I. Other Types of Graphics. J. Animations. Appendix A: Word List Word List Appendix B: Resources, Research, and Bibliography Recommended Resources	

3ibliography

Part I: Global Style Conventions

A. Computer-Based Testing

Computer-based testing (CBT) differs from traditional print-based testing (PBT). Traditional style conventions applied to printed test forms must be modified for computer-based test forms because not all print-based style conventions are appropriate for display on a computer screen.

For example, the Verdana font has been chosen because it was specifically designed to be used in place of Times New Roman and other serif fonts that often appear in printed test forms. Verdana characters are slightly larger than characters in other fonts, and the ample space between the characters makes them easy to distinguish at low screen resolutions.

Layout Considerations

The presentation of content in computer-based test forms depends on the user interface (UI) in the online delivery system. The guidelines in this section should be applied to the extent possible once the online delivery system is identified.

Content panes

Students should have the option of viewing content in one pane that is the full size of the computer screen or in sub-panes that divide the screen horizontally or vertically. For example, students should be able to view a selection on the screen by itself or on the screen with an item.

The sizes of content panes depend on the amount of space allotted in the UI for viewing content. For example, content panes will be larger in a UI in which 80% of the viewing area is used for content and 20% is reserved for headers, navigation tools, and other non-content elements than in a UI in which 70% of the viewing area is used for content and 30% is reserved for non-content elements.

Scrolling

Students should not have to use horizontal scrolling to view test content in its entirety. The following guidelines are designed to minimize the need for scrolling:

- Lay out content across the computer screen rather than in columns.
- Display each item on the screen by itself.
- Allow students to view a selection on the screen by itself or on the screen with an item. This
 eliminates the electronic equivalent of turning a page to flip between the selection and the
 items.
- Similar options should be provided for viewing a cluster. Students should be able to view the graphic on the screen by itself or on the screen with an item in the cluster.
- Whenever possible, arrange graphic options in a two-over-two box (stacked) layout.

Which graph shows that Noel walked home from school at a constant rate?

Line Breaks

The locations of line breaks depend on the operating system on the computer as well as the size of the monitor being used to view test content. Hard line breaks should not be inserted unless absolutely necessary because lines of text do not necessarily break at the same locations from computer to computer.

B. General Font and Alignment Specifications

Table 2 shows general font and alignment specifications for different text elements. See "Selected-Response Items" in this section for information about option alignment.

Note: All text should be displayed on a white background.

Table 2. General font and alignment specifications for text elements in test forms	Table 2. General for	nt and alignment	t specifications f	for text	elements i	n test forms
--	----------------------	------------------	--------------------	----------	------------	--------------

Content	Font	Alignment		
Items	14 pt. Verdana	Left aligned		
Part headings in items	14 pt. Verdana Bold	Left aligned		
Boxed text	14 pt. Verdana	 Box: left aligned Text: longest line centered in box; other lines left aligned on longest line. 		
Emphasis terms	14 pt. Verdana Bold	n/a		

Note: At this time, Verdana is specified as the primary font for test content. However, another font may be chosen upon further analysis of the effects that fonts have on readability and students' ability to retain information.

C. Stimulus Specifications

The stimulus of a cluster describes a scientific phenomenon and provides the student with the necessary context around that phenomenon to answer the associated items. A stimulus may include a title, but a title is not necessary.

Phenomenon

The phenomenon is a scientific observation or an engineering problem around which the cluster is based. The phenomenon should be stated as the first sentence(s) of the stimulus, followed by two hard returns.

Example phenomenon:

Fog appears and disappears over the course of a morning in the Willamette Valley in Oregon.

Task Statement

The task statement concludes the stimulus by telling the student exactly what he or she is expected to do in the cluster. The task statement is preceded with "Your Task" in bold, followed by two hard returns.

Example task statement:

Your Task

In the questions that follow, you will develop an explanation for the appearance and disappearance of fog.

Note: A standalone item with a stimulus does not have a task statement ("Your Task").

Stimulus Layout

If the stimulus contains information that students will consistently reference when working through the items in the cluster, the writer should select a split-screen layout that allows the stimulus to appear on the left and the items on the right. If the stimulus only serves as an introduction to the phenomenon, the writer should select a single screen layout. Animations, graphics, and other stimulus material should be sized to avoid the need for horizontal scrolling. If it becomes difficult to limit the size of an animation or another element of the stimulus, a single screen layout may be selected to avoid horizontal scrolling.

Wording should be consistent throughout the stimulus and cluster. For example, do not use "steam" and "vapor" interchangeably.

D. Interaction Types

Science assessments consist of various types of interactions, including selected-response (SR) items, constructed-response (CR) items, and technology-enhanced items (TEIs). In test forms, items are numbered sequentially, beginning with number 1.

This section provides general global style conventions and specifications for items. See Part II for content specific conventions and for information about TEIs.

Selected Response Interactions

All SR interactions consist of a stem and options. The format of the stem and options varies among items based on content. (See "Options" in this section for formats of options.)

Stems:

- Stem: the part of the SR item that precedes the options
- Closed stem: a stem that is a complete sentence and ends with a period or question mark
- Open stem: a stem that consists of a sentence fragment and becomes a complete sentence when combined with each option.

Closed stems

When the interaction stem is closed, the options are either complete sentences or sentence fragments. Options that are complete sentences begin with a capital letter and end with a punctuation mark.

How would a fish population affect the stream ecosystem?

- A. Fish would lower the water temperature.
- B. Fish would produce oxygen from the water.
- C. Fish would block sunlight, increasing plant growth.
- D. Fish would produce waste, providing nutrients to plants.

Options that are fragments begin with a lowercase letter (unless the first word is a proper noun or adjective) and do not end with a punctuation mark.

The traits of populations in the forest ecosystem have changed over time. What caused the traits to change?

- A. natural selection
- B. lack of mutations
- C. unlimited resources
- D. asexual reproduction

The treatment of options that are imperative sentences depends on whether the implied subject of the sentence in each option is "you." If it is, the options are treated as complete sentences. If it is not, the options are treated as fragments.

<i>Subje</i> What	<i>ct is implied "you":</i> should you do next in the experiment?	<i>Subject is not implied "you":</i> What should Fiona do next in the experiment		
Α.	Water the plants.	Α.	water the plants	
В.	Label the volumes.	В.	label the volumes	
C.	Cut the plant stems.	C.	cut the plant stems	
D.	Record plant heights.	D.	record plant heights	

Open Stems

When the item stem is open, both the stem and the options are fragments that, when combined, form complete sentences. The fragment in the stem does not end with a punctuation mark. Regardless of whether the options are complete sentences or fragments, they begin with a lowercase letter (unless the first word is a proper noun or adjective) and end with a punctuation mark.

The independent variable of the investigation is

- A. volume.
- B. height.
- C. mass.
- D. time.

In open-stem items, the options should not repeat large quantities of text. The stem must be long enough to provide context for the options. There is **no** punctuation at the end of an open stem (i.e., dash or colon).

The tussock moths obtain energy in cellular respiration by

- A. taking in water.
- B. releasing oxygen.
- C. breaking down glucose.
- D. inhaling carbon dioxide.

Options

Although all SR items have options, the number and format of these options vary from item to item based on content. The number of correct answers among the options also varies.

• In the case of a multiple choice interaction, options are identified with consecutive uppercase letters.

What is one purpose of ATP molecules in plant and animal cells?

- A. to increase the rate of diffusion across cell membranes
- B. to decrease the rate of chemical reactions
- C. to store energy used for cell processes
- D. to pass genetic traits to offspring

• In the case of a multiple select interaction, options are preceded by open boxes, which students can click on to select the correct answers.

Select **all** the cell structures found in animal cells.

- cell membrane
- n mitochondria
- chloroplast
- cell wall
- nucleus

Option alignment and order

Table 3 provides general guidelines for the alignment and order of options in SR items.

Note: Options derived from a stimulus, such as a selection or graphic, are ALWAYS arranged in the same order in which they appear in the stimulus. This guideline supersedes all other guidelines listed in Table 3.

Option Alignment and Order									
Option Type	Alignment	Order	Example						
Graphic options	 Graphic: left aligned Option letter: top aligned or vertically centered on graphic (use best judgment) 	Arranged for best visual presentation (use best judgment)	n/a						
Numeric options	Decimal aligned: • stand-alone numbers • decimal values • numbers that precede or follow symbols: 40°, \$20.00 • numbers that precede labels: 6 ties, 12 bananas • numbers that precede units of measure: 15 kilograms, 30 cm	Arranged in ascending or descending order	 What percentage of students prefer strawberry yogurt to blueberry yogurt? A. 25% B. 50% How long, in centimeters, is each necklace? A. 9 cm B. 12 cm 						
	Fractions:Fraction: left alignedOption letter: vertically centered on fraction	Arranged in ascending or descending order	How many cups of sugar does the student need to make two cakes? A. 1/2 B. 1/4						
	Times of day: • Decimal aligned on colon	Arranged in ascending or descending order	At what time does the student eat lunch? A. 11:30 a.m. B. 1:00 p.m.						

Table 3	3.	Guidelines	for th	ne	alignment	and	order	of	options	in	SR	items
Tuble :		Guidennes	101 0	i C	anginnene	unu	oraci	0.	options		513	icenno

Option Type	Alignment	Order	Example
Text options	Left aligned	Words: arranged in ascending or descending order by word length	What large molecule is made of many small amino acid molecules? A. lipid B. protein C. carbohydrate
	Left aligned	Phrases and sentences: arranged by length, longest to shortest or vice versa; if more than one line of text is used as separate paragraphs (such as a title followed by a description), the length of the first line of text is considered (e.g., the title)	Which statement describes DNA?A. It is a macromolecule.B. It is found in the nucleus.C. It makes up chromosomes.

Table 3. Guidelines for the alignment and order of options in SR items (cont.)

Note: Options are not arranged in the prescribed order when doing so cues the answer to the item.

Constructed-Response Interactions

CR items consist only of item stems. The stems are complete sentences written as imperative commands.

Explain how the amount of sunlight affects the growth of plants. Use information from Investigation 1 to support your answer.

Describe how meteorologists predict the weather. Use information from the Weather Patterns map in your description.

Bullets in Items

- Bullets are used for student action items—what a student must do to earn points, as listed in the rubric.
- Do not use a bullet if there is only one directive in an item.
- Always use bullets to denote multiple directives.

Parts in Items

Some items are divided into parts labeled with consecutive lettered headings that are followed by two hard returns. In headings, the word *part* and the part letter are capitalized and bold. In item text, the word *part* is lowercase and the part letter is capitalized. Parts may comprise a mix of interaction types or multiple interactions of the same interaction type.

Part A

Select a testable, scientific question that can be answered by performing an experiment with the setup shown in the Hanging Magnets Experiment picture.

- A How does the distance between the magnets affect the force?
- B How does the orientation of the magnets affect the force?
- © Will the force between the magnets always exist?

Part B

Use the table to select the properties you want to hold constant and the properties you want to change when you run your experiment to answer the question you chose in part A.

E. Graphics in Items

Introductory Statements

Descriptive terms

A graphic in an item should not be referred to as a *graphic*; instead, use a more descriptive term, such as *graph, table, or diagram*. The graph, table, or diagram should be labeled with a Figure or Table number. Any references in the stimulus or items should use this label rather than the title.

Figure 1. Bird's Nest in Tree Use Figure 1 to describe ...

Table 1. Population of Zebra in the Serengeti Use Table 1 to predict ...

Above and below

Do not use the terms *above* and *below* to refer to the location of a graphic; instead, use terms such as *this, that, an,* and *the*.

An equation is shown.

Select the variables that make the equation true.

Introductory statements in the item stems

Graphics positioned within items are aligned to the **center** and introduced as part of the item stem using the Figure or Table number.

Figure 1 shows a diagram of photosynthesis. Table 1 shows characteristics of two populations of coyote.

An introductory statement that is part of an item stem should be as descriptive as possible; however, a sentence such as "See Figure 3" is acceptable when a more descriptive introduction is not available or appropriate.

Acceptable: See Figure 3.

Preferred: Figure 3 shows food relationships among some organisms in the forest ecosystem.

Note: In SR items, stem text will be used before the graphic to introduce the item. The graphic will appear next. The graphic will be followed by any remaining stem text, including the question part of the stem. The options will appear last.

Referring to Text from Graphics in Items

Items sometimes refer to table column headings, labels, and other text in graphics. Use the guidelines that follow to determine the appropriate treatment of text from graphics that is referred to in items. Note that these guidelines apply only to the treatment of graphic text in items, not to the text in the graphic itself. (See Part III for information about the treatment of text in graphics.)

- Text from graphics is not enclosed in quotation marks.
- Titles and headings appear in regular type and follow the same capitalization used in the graphic.

Which unit should be used for the measurements in the column titled Volume of Water?

- Labels and other text appear in regular type but do not necessarily follow the same capitalization used in the graphic. Use the guidelines that follow to determine whether to capitalize labels and other text from graphics.
- Capitalize labels that precede letters or numbers if the label is capitalized in the graphic.

Data from the experiment are shown.

Trial	Speed (m/s)
1	10
2	15
3	25
4	20

Why did Trial 1 have an outcome that was different from the outcome in Trial 3?

- Capitalize labels that are proper nouns.
- Lowercase labels that are common nouns.

Jesse walks three dogs in his neighborhood. Chart 1 shows the number of times he walked each dog last week.

	Chart 1
Dog	Number of Times Walked
Schnauzer	5
Beagle	4
Labrador retriever	10

How many more times did Jesse walk the Labrador retriever than he walked the schnauzer?

- Elements are not capitalized when written out (i.e. hydrogen, oxygen)
- Lowercase labels that are lowercase or not shown in the graphic.

The radius of circle J is 5 centimeters.

The radius of circle K is twice as long as the radius of circle J. What is the **diameter**, in centimeters, of circle K?

F. Excerpts and Citations

Excerpts and citations for external sources should be formatted as shown below. Use quotation marks for titles of articles; italicize titles of longer works such as periodicals, journals, and books; and underline web addresses, but make sure there is no live link.

Source 1: Excerpt from "Light as a Broad-Spectrum Antimicrobial" by Peter Gwynne and Maurice Gallagher. Published in the academic journal *Frontiers in Microbiology*, 2018 (adapted from original).

Research exists regarding the use of light as a sterilizing agent in food and water processing, much of it based around UV light. UV, however, penetrates poorly, limiting its application to surface decolonization. Although UV light is powerful, visible light wavelengths may be better in application.

Source 2: Excerpt from "Ultraviolet Disinfection of Drinking Water" by the Government of Western Australia Department of Heath. Published on the website <u>https://ww2.health.wa.gov.au</u>, 2016 (adapted from original).

UV light will only travel in a straight line, so any obstruction will reduce its efficiency. Water that has not been filtered can contain iron, manganese, and other particles that can either absorb or scatter UV light, reducing the effectiveness of the system. Bacteria that are able to pass through—protected by shadows created by dirt, debris, or other particles—may be able to survive treatment.

G. Scoring Assertion Specifications

Item writers create scoring assertions to outline the criteria used to score the item. Scoring assertions should capture the features of the student response that receive credit *and* the inference that the test developer would like to make from that evidence. The example below shows several scoring assertions for a multi-interaction item. For each assertion, the test developer describes the features of the student response that receive credit ("The student [selected, identified, etc.] ...), then links that feature to an inference about student understanding ("providing evidence of [the ability to, an understanding of, etc.]").

Score Rationale

The student identified distance as affecting the force, providing evidence of the ability to form a conclusion based on experiment data.

The student ran three trials keeping the weight of the box the same, providing evidence of an understanding of how to control variables in an investigation.

Each cluster must have the **minimum** number of assertions when it goes into the Locked Operational Pool. To accomplish this, clusters should be created and revised to have at least two more assertions than the minimum to account for interactions and assertions being changed, collapsed, or rejected throughout the review process.

- Minimum number of assertions for final operational version of a cluster:
 - Elementary: 5
 - Middle: 7
 - **High: 7**
- **Recommended minimum** number of assertions for working drafts/versions of a cluster:
 - Elementary: 7
 - Middle: 9
 - High: 9

H. Exemplar Conventions

When to Create Exemplars

There are three main reasons to create exemplars.

- 1. There must be an exemplar created for each point value before an item can be web approved.
 - a. Considering that clusters can have a larger number of possible point combinations, we propose that each exemplar created after the first exemplar adds the next consecutive assertion. See example below.
- 2. There should be an exemplar for each dependent scoring possibility, or one example in the case of infinite possibilities.
 - a. The dependent assertion exemplar should highlight the specific dependency. We recommend that each exemplar have the minimum number of assertions marked as true (only respond to the parts relevant to the dependency), so that it is easier to highlight the specific assertions and interactions involved in the dependency. This will likely mean that most dependency exemplars will be 1 point.
- 3. Exemplars can be created to highlight responses that are not scoring properly.
 - a. The reviewer should leave a comment in ITS that explains why the exemplar was created.

"The dependent scoring in part B does not work as described in the assertion text. See CR1Review_PartB for the response that should receive credit but does not."

b. The exemplar should be deleted when the issue is resolved.

Naming Conventions

Each exemplar should begin with a tag that indicates what type of exemplar it is, followed by a short description.

- Standard
 - This denotes "normal" scoring.
 - Follow with the point value:
 - Standard_2pt
 - Standard_FullCredit
- Dependency
 - This denotes that the exemplar relates to dependent scoring.
 - Follow with what part or parts are involved in the scoring, as well as a short description if there are several dependencies in those same parts.
 - Dependency_PartAB
 - Dependency_PartABC_greater
 - Dependency_PartA
- Review
 - This denotes a response that a reviewer had specific concerns about.
 - \circ $\;$ Begin with the review level in which the issue was found.
 - CR1Review_1pt
 - CR1Review_PartABC_greater

Example from Staging Site – IAT Sandbox 18402

Name	Points	Actions
Standard_FullCredit	3	<u>View</u> <u>Delete</u>
Standard_2pt	2	<u>View</u> <u>Delete</u>
Standard_1pt	1	<u>View</u> <u>Delete</u>
Dependency_PartAB	1	<u>View</u> <u>Delete</u>
Dependency_PartABC_greater	1	<u>View</u> <u>Delete</u>
Dependency_PartABC_equal	1	<u>View</u> <u>Delete</u>
CR1Review_1pt	1	<u>View</u> <u>Delete</u>
No response	0	<u>View</u> <u>Delete</u>

Exemplar: Standard_2pt

Saved By: Matthew_Davis Date Saved: 4/22/2020 2:04:25 PM Approved: No

Score response when exemplar was saved: Your respnse earned 2 points of a possible 3

Score F	Rational
The student entered a value of 5.	~
The student entered a value of 7 for y, or a value that corresponds to the value of x entered in part A.	~
The student selected x < y or a selection corresponding to their values in parts A and B.	×

I. Option Rationales (Formative, specific projects only)

IAT Options

- Multiple Choice: Select only one option.
- Multiple Select: Select two or more options.

Formatting Rationales

- Rationales for correct answers start with: "Key ..."
- All rationales provide a brief reasoning for why the response is a key or distractor relative to the prompt.

Multiple Choice Example

How does energy flow through the ecosystem?

- A. The algae produce their own food. Key - The algae are producers and, therefore, make their own food.
- B. The salmon makes its own energy. The salmon is a consumer and must get its energy from eating other organisms.
- C. The sculpin relies on the salmon for energy. The sculpin is eaten by the salmon.
- D. The mollusk produces energy from the salmon. The mollusk is not eaten by the salmon.

Multiple Select Example

Select the **three** fossils of organisms that lived more than 300 mya (million years ago).

Fossil 1

This fossil is found in the rock layer at the top of the column, which means the organism lived less than 30 mya.

D Fossil 2

Key - This fossil is found in the second rock layer from the bottom of the column, which means that the organism lived 450–500 mya.

□ Fossil 3

Key - This fossil is found in the bottom rock layer of the column, which means the organism lived over 550 mya.

D Fossil 4

This fossil is found in the second rock layer from the top of the column, which means the organism lived less than 100 mya.

D Fossil 5

Key - This fossil is found in the bottom of the rock layer of the column, which means the organism lived over 550 mya.

J. Paper Style

Compatible Item Types

ETC, MC, MS, Table Match, EQ

In most cases, language should be edited as little as possible to make the directions appropriate for paper use. However, the goal for the students is to make the testing experience as similar to the online experience as possible, so in some cases, the addition of directions is recommended in order to clarify instructions for interactions that are clearer online.

ETC Interactions

- Instead of "Click on the blank boxes to select ..." stems should read "Select the word or phrase ..." or "Select a word or phrase"
 - If there are multiple ETCs in one interaction, use "Select a word or phrase in each box to ..." or similar. It needs to be clear that only one selection in each grouping should be made. In causal chains especially (depending on the style), it needs to be clear that only one statement should be selected for each step. In these cases, "in each box" should be included in the stem for clarity.
 - In the ETC interaction, change the options to orient vertically. They should appear vertically in a box rather than next to each other horizontally.

Inline Orientation	
○ Horizontal	

- For ranking interactions, use "Fill in the bubbles to rank"
- For interactions in which it is not obvious that students should make only one selection for each step—such as flowcharts or tables—add the statement "Make only one selection for each step." "Step" may be replaced with an appropriate term for the interaction.
 - This statement is added because online, once students make a selection, that is the only selection shown, so they cannot accidentally select another choice. On paper, students may accidentally fill in multiple bubbles in the same step. The addition of this wording reduces the likelihood that students would make this mistake, therefore making the experience closer to the online testing experience.

MC and MS Interactions

- Wording should match online wording.
- For choice interactions with graphics as options that are all vertical, consider changing the options to 2x2 (two rows with two options each).

Table Match Interactions

- Wording should be changed to "Fill in the bubbles to select/identify/etc."
- If the online version of a table match allows only one box to be checked per row or column and this would not be obvious to the student viewing the item on paper, add verbiage to make this clearer, e.g., "Fill in one bubble in each row."

Equation Interactions

• Check that the stem makes sense, given the appearance of the EQ on paper, and edit if needed. Include "Enter a number in each blank box." In the EQ Paper Renderer, always include 7 digits (columns), for **all** grade levels. This is consistent with the Math team's paper style.

Equation Input Type	
I Grid ○ Text	
Format	
Number Series Columns 7	

• Make the bubbles match what is available in the online rendering as much as possible. That is, if subtraction, decimal, and/or fraction/division is allowed in the online version, include these for paper as well (note, however, that multiplication and addition are not available for paper). If they are not allowed for online, do not include them for paper. Machine scoring for paper works the same way as the scoring in the grub, so we can allow students to enter expressions on paper the same way we do for online.

Special Content Rows	
🗹 "-" Minus	
Omit from outer columns	
✓ "/" Forward Slash	
Omit from outer columns	
✓ "." Period	
Omit from outer columns	

Graphics

All graphics will be converted to grayscale. Ensure that graphics render appropriately. Graphics that require students to differentiate between colors should be avoided when possible. If the item refers to the colors in stems or options, but colors are not labeled in the graphics, labels should be added. Check any color graphics with the monochromacy view on the Coblis website (<u>https://www.color-blindness.com/coblis-color-blindness-simulator/</u>) to see whether edits are needed (e.g., adding patterns if colors appear the same in grayscale).

Example: Figure 1 shows parent flowers and offspring of various colors, and those colors are not labeled in the graphic. The question relating to Figure 1 is written as:

Describe the inheritance pattern of the flowers shown in Figure 1.

- A. Yellow flowers inherit their color from their parents.
- B. Orange flowers inherit their color from their parents.
- C. Blue flowers develop their color based on the environment.
- D. White flowers develop their color based on the environment.

Labels should be added to Figure 1 to clarify the color of each flower in the diagram because the colors cannot be determined in grayscale.

K. Preferred Editorial Styles

Spelling and Plurals

Common nouns

The plurals of most nouns are formed by adding *s*: boys, trees. Exceptions to this rule include the following:

- The plurals of words that end in ch, j, s, sh, ss, x, or z are formed by adding *es*: churches, biases, wishes, classes, foxes, waltzes.
- The plurals of words that end in a consonant and y are formed by changing y to i and adding es: babies, realities.
- The plurals of words that end in o are formed by adding es or s: heroes, potatoes, egos, cellos.
- The plurals of words that end in f or fe are usually formed by changing f to v and adding es: hooves, lives, but dwarfs, roofs.

Note: Many nouns have irregular plural forms (child/children, deer/deer, die/dice). When in doubt about the form or spelling of a plural, consult a dictionary.

Compound nouns

The plural of a hyphenated compound noun is usually formed by adding s to the main noun in the compound: brothers-in-law, courts-martial.

For solid, or closed, compound nouns, plurals are formed the regular way: classrooms, cupfuls, stopwatches.

The plurals of open compound nouns are formed by pluralizing the main noun: attorneys general, centers of industry.

Proper nouns

The plurals of proper nouns are usually formed by adding *s* or *es*. The plural of a proper noun ending in *y* takes an *s* (Monday/Mondays, the Smith family/the Smiths).

Letters, numbers, and abbreviations

The plurals of capital letters used as words, numerals used as nouns, and abbreviations are usually formed by adding *s*. To avoid confusion, the plurals of lowercase letters are formed by adding an apostrophe and an *s*.

Juan received all Bs on his report card. the 1880s DVDs *x*'s and *y*'s

Possessives

Singular nouns

The possessive of most singular nouns, both common and proper, is formed by adding an apostrophe and an *s*. This includes words that end with an unpronounced *s* and names with an ending pronounced *eez*.

the marquis's quarters Albert Camus's novels Euripides's works However, a noun that is singular in meaning but plural in form takes an apostrophe only.

this species' characteristics Hocking Hills' nicest campground

Plural nouns

The possessive of most plural nouns is formed by adding an apostrophe only.

the Joneses' house the Martinezes' son *but* children's literature women's rights

Letters and numbers

The possessive of letters and numbers is formed by adding an apostrophe and an *s*.

LBJ's diary 1980's worst flood

Joint vs. separated possession

When closely linked nouns are considered a single unit and "possess" the same thing, only the second noun takes an apostrophe and an *s*.

my mom and dad's house Amelia and Brianne's teacher

When the things being possessed are not the same, both nouns take an apostrophe and an *s*.

my mom's and dad's birth certificates Cleveland's and Chicago's rail systems

Compound Terms

compound noun: two or more nouns combined to form a single noun

compound modifier: a modifier that consists of two or more words

- An open compound is written as two words: real estate, sand dollar.
- In a *hyphenated compound*, the words are joined by a hyphen: self-esteem, half-baked.
- A *solid compound* is written as one word: playground, textbook.
- Avoid compound modifiers like "fish-eating bird." Instead use "a bird that eats fish."

Compound modifiers

Compound modifiers are usually hyphenated before a noun and open after a noun.

an open-ended question; a question that is open ended a well-read student; a student who is well read a 250-page book; a book that is 250 pages long a sixteen-ounce bottle; a bottle that holds sixteen ounces There are a few exceptions to this rule:

• When the compound modifier is a common open compound noun, it should be hyphenated only to prevent ambiguity.

high school teacher real estate listing but short-story writer real-number theory

• When the first modifier in the compound is an adverb that ends with *-ly*, the compound is open.

highly paid assistant hotly contested campaign

• When the compound is made up of a number and an abbreviated unit of measurement, the compound is open.

a 5 km race a 3 m wall

• When a phrase is used as a modifier, it is usually hyphenated before a noun and open after a noun.

over-the-counter medicine; medicine sold over the counter an up-to-date form; a form that is up to date

• When the second part of a compound modifier is omitted, a space follows the hyphen.

fifteen- and twenty-year mortgages micro- and macro-evolution but third-, fourth-, and fifth-grade students

Prefixes and suffixes

Words that are formed with common prefixes and suffixes (*anti-, bi-, mid-, multi-, non-, over-, post-, pre-, re-, sub-, un-, under-, -fold, -less, and -like*) are usually closed.

Bivalve Catlike Multipurpose Noninvasive

However, a hyphen should be used

- before a numeral or a capitalized word: post-1800, mid-September.
- before a compound term: non-self-sufficient.
- to separate combinations of letters that might be hard to read: anti-intellectual, de-ice, lava-like.

Use an en dash instead of a hyphen in a compound adjective when one of its elements consists of an open compound: post–World War II.

Capitalization

Proper nouns and adjectives are always capitalized.

Personal names and titles

All personal names (first, middle, last) are capitalized, as are initials, nicknames, and the suffixes Jr. and Sr. Do not set off a suffix with commas. Include a space between the initials in a personal name except when the initials are used alone.

Susan B. Anthony Ivan the Terrible E. B. White Martin Luther King Jr. LBJ

A person's title or office is capitalized only when it directly precedes a personal name and is part of the name.

President Lincoln; the president Professor Johnson; the professor Reverend Jackson; the reverend General Grant; the general

When a title is used in apposition to a personal name (meaning it is used as a description rather than as part of the name), it is lowercase.

American president Lincoln former president Bush the Southern-born reverend Jackson

Kinship names

Kinship names are lowercase unless they directly precede or replace a personal name. When kinship names are used in apposition to personal names, they are lowercase.

My mom and dad have been married for 30 years. Did you write to Aunt Kelly? Can I have a cookie, Mom? My kids love their aunt Kelly.

Racial and Ethnic names

Names of ethnic and racial groups are capitalized, as are adjectives derived from them. Do not hyphenate compound terms.

African Americans; African American poetry Asians; Asian influence; an Asian American Caucasians; Caucasian population

Geographic names Proper names and nicknames are capitalized.

> New York City the Big Apple

Directional nouns are lowercase when they are used to indicate direction but capitalized when they refer to a distinct region.

a north wind; North African countries; in northern Africa a southern climate; southern Ohio; the South; South America eastern Illinois; the East Coast

Trademark and brand names

Use generic terms whenever possible. When using a brand name that is trademarked, capitalize the name but do not include the trademark symbol.

Post-it Notes; sticky notes Kleenex; tissue

Titles of Works

Capitalization

Use headline style capitalization for titles of works. Capitalize the first and last words of the title and all interior words except

- articles (a, an, the).
- coordinate conjunctions (and, but, for, or, nor).
- prepositions, regardless of length, unless they are functioning as nouns, adjectives, or adverbs.
- the word as.
- scientific terms/names that begin with a lowercase letter (pH) or are lowercase in running text (*E. coli*).

Driving through Vermont "The Ins and Outs of Trail Running" "Reading for Fun" Turn Up the Volume A Primer on Soil pH

Hyphenated compounds in titles

Use the following guidelines for capitalizing a hyphenated compound in a title:

- Capitalize the first element of the hyphenated compound.
- Capitalize any subsequent elements unless they are articles, coordinating conjunctions (and, but, for, or, not), or prepositions.
- If the first element is a prefix or combining form that could not stand by itself as a word (anti, pre), do not capitalize the second element unless it is a proper noun or proper adjective.
- Capitalize the second number in a hyphenated number or fraction that is spelled out.

Heights of Sixth-Grade Students Teacher-to-Teacher Initiatives E-learning for Students The Animals of Sub-Saharan Africa Twenty-First-Century Skills The Two-Thirds Majority

Tense

Present tense is the default tense. Some sentences will be in future and past tense.
Treatment of Terms

Note: See "Treatment of Numbers" in Part III for information about the preferred treatment of numbers.

Avoid the use of these words and phrases on science assessments:

- believe
- create
- prove (science does not work to prove hypotheses or theories true—this is a mischaracterization of how science works)
- truth (science is asymptotic to truth)
- above and below (referring to tables or graphics)
- of the following

Emphasis terms

Emphasis terms are boldface at all grade levels.

Select **all** the questions you could ask to help solve the dilemma. Select **two** characteristics that can be hereditary.

However, avoid using qualifying terms like "best," "most likely," etc. In the rare instances when these terms are used, they should be boldface.

Which is the **most likely** reason the population of deer decreased?

Letters as letters

Letters referred to as letters in text are italicized.

Liam has 2 plant pots labeled with the letter E, 2 plant pots labeled with the letter F, and 2 plant pots labeled with the letter G.

Contractions

Contractions can be used in selections and other material from outside sources (e.g., stimuli). However, contractions are not used in items.

Options

The term "option" is never used in a prompt.

Incorrect: "Select the option" or "Which option" Correct: "Select the [sentence, element, design, etc.]" or "Which [sentence, element, design, etc.]"

Abbreviations

Note: Except for abbreviated units of measure and forms of address, abbreviations are rarely used in items. Abbreviations are used in graphics when space is an issue.

Acronyms and initialisms

acronym: an abbreviation based on the initial letters of a term and pronounced as a word (NASA, OPEC)

initialism: an abbreviation based on the initial letters of a term and pronounced by spelling out each letter (AARP, DNA)

Acronyms and initialisms are usually set in all capital letters without periods. When an acronym or initialism is preceded by an indefinite article, the choice of a or an is based on the pronunciation of the abbreviation.

an HMO an AARP newsletter a DNA sample a NASA initiative an OPEC worker

Unless an acronym or initialism is extremely well known (e.g., IRS, PTA, NATO), spell it out the first time it is used and enclose the abbreviated form in parentheses after the spelled-out term.

The grade-level expectations (GLEs) for science are listed below. The GLEs for English Language Arts (ELA) are listed in the next section.

Latin abbreviations

Use Latin abbreviations only in parenthetical text. The abbreviations most commonly used are e.g. (for example), etc. (and so on), and i.e. (that is). In text, these abbreviations are set in regular type.

Unapproved resource materials (cell phones, dictionaries, etc.) are not allowed during test sessions. Reference books (i.e., dictionaries, thesauri) are not allowed during test sessions.

Taxonomic/Systematic conventions

Genus and species names should always be written in italics, including where they appear in figures and tables.

Tyrannosaurus Tyrannosaurus rex T. rex

Genus and species abbreviations are written in a combination of italicized and non-italicized text.

cf. *Tyrannosaurus Tyrannosaurus* cf. *rex Tyrannosaurus* sp. *Tyrannosaurus* spp. *Tyrannosaurus* insertae sedis

Names for other systematic groups should not be written in italics (e.g., Plantae, Animalia, Abelisauroidea, Dromaeosauridae)

Genotypes Genotypes and single allele letters should be italicized.*

> Gg BB dd

*except when text formatting is not available within an interaction type (e.g., ETC dropdown options and table input boxes)

Geographic abbreviations

The names of states are spelled out in running text. Abbreviations are used where a zip code follows or in other contexts in which abbreviations are appropriate (e.g., acknowledgments, graphics, tables, lists). In these cases, use the two-letter postal abbreviations without periods.

Spell out United States when it is used as a noun; either the abbreviation U.S. or US may be used as an adjective.

The campus is in Westerville, Ohio. Please mail the documents to PO Box 121, Cloverdale, VT, 00111. the president of the United States (*not* the president of the US) the U.S. Treasury Department

Time

Use capital letters without periods in indicate eras. (Note that BC and BCE follow the date, while AD and CE precede the date.)

55 BC AD 1066

Months are spelled out in running text but may be abbreviated in graphics. Use the following abbreviations:

Jan.	May	Sept.
Feb.	June	Oct.
Mar.	July	Nov.
Apr.	Aug.	Dec.

Days of the week are spelled out in running text but may be abbreviated in graphics. Use the following abbreviations:

Sun. Thurs. Mon. Fri. Tues. Sat. Wed.

Times of day: Lowercase letters followed by periods are used for a.m. and p.m.

Millions of years ago (or million years ago): mya

500 mya 1 mya Part II: Specific Style by Interaction Type

A. Multipart Items

Many items within a cluster will have more than one interaction for the student to complete. The types of interactions can differ throughout the item or the item can consist of one type of interaction repeated.

- Each interaction heading, or "part heading," is title case and **bolded** before the stem of the interaction.
- There should be two hard returns between the part heading and the stem.

Part A

Select a testable, scientific question that can be answered by performing an experiment with the setup shown in Figure 1.

Note: The preamble sentences "The following question has two parts. First, answer part A. Then, answer part B." are <u>no longer used</u> for our science items.

For the stem of subsequent interactions, do not refer back to the student's response to previous interactions ("... you chose in part A") unless there is dependent scoring. This referencing suggests that the student can get credit for pairing parts A and B correctly without selecting the correct answer to the question for part A.

Use: Which given evidence supports the answer to part A? OR Which statement provides a reason for the answer to part A?

B. Multiple Selection (Multi-Select) Interactions

Multi-select items are selected response items that allow the student to choose more than one option.

Note: For multiple choice interactions, see "Selected-Response Interactions" in Part I.

Task Directions

• For all elementary and middle school interactions use "Select (number of options) ..." The number should be spelled out and **bolded**.

Select **four** statements that describe predator-prey relationships.

• For some high school interactions, the exact number of selections may be omitted.

Select **all** the statements that describe predator-prey relationships.

Options

- If options are one word or phrase, use lowercase; no punctuation is necessary.
- Option order:
 - \circ $\;$ In the order they appear in a stem graphic or table $\;$
 - In ascending order, if numeric options
 - Alphabetically or ascending or descending order, if all options are one word
 - By ascending or descending order, if phrases
 - If graphics only, arrange in a logical order

Human Readable Rubric

The human readable rubric outlines correct responses to the item.

Example:

A full-credit (1 point) response includes The student selected: • "the flower is red" AND • "the flower is blue"

C. Edit Task Inline Choice (ETC) Interactions

ETC items allow students to select a response from a dropdown menu in order to complete a sentence or a cell in a table.

Task Directions

For one dropdown box, use: "Click on the blank box and select the word/phrase ..."

For two or more dropdown boxes, use: "Click on each blank box and select a word/phrase ..." OR

"Click on the first blank box and select the word/phrase Then, click on the second blank box and select the word/phrase"

Note: When the student is directed to complete a model, causal chain, steps in a process, or similar task, do not use the phrases "in order" or "in sequence" as that is implied in the directive (the student would not be completing a chain of causality if the steps were out of sequence). (But see note in section H, External Copy Interactions.)

Options

The number of options in each dropdown will vary from dropdown to dropdown and from item to item based on content.

Dropdown options that are full sentences should have initial caps and end punctuation. In tables and other graphics, dropdown options that are fragments should have initial caps and no end punctuation.

The options within the dropdowns should be ordered using the same guidelines as multiple choice and multi-select interactions, most commonly in ascending length.

Human Readable Rubric Example:

> A full-credit (1 point) response includes The student selected:

• "increased" for the first blank

AND

• "increased" for the second blank

OR

- "decreased" for the first blank
- AND
 - "decreased" for the second blank

Exemplar: Include the correctly completed sentence, diagram, or table.

D. Table Interactions

Table Match Interactions

Table match interactions allow the student to select cells within a table to show a relationship between the column header and the row header.

Task Directions

- Use: "Select the boxes to identify each organism's role in the ecosystem." OR "Select the boxes to show the order of the steps of (process) ..."
- When there is more than one correct answer combination in an item, the following guideline **may** be included:
 - There may be more than one correct answer.
- When it is unclear that a student can and should select more than one box, the following guideline should be included:
 - You may select more than one box for each part ...

Tables

- Column and row headings may contain text or graphics. When graphics are present, it is preferable for a text label or descriptor to be present.
- In the directions, refer to the first column first (when possible).
- If the text in the column or row heading is a complete sentence, it should begin with a capital letter and end with the proper punctuation.
- If a column or row heading is a phrase or one word, it should begin with a capital letter and should not have punctuation.
 - The subsequent words of a phrase should not be capitalized, unless the phrase is a proper noun or adjective.
- Within an item, column headings must all follow either title case/capitalization or sentence case. Within an item, row headings must all follow either title case/capitalization or sentence case.
- Title and sentence case/capitalization should be used consistently. Column and row headings should be in one of the following orders when they appear:
 - In the order they appear in a stem graphic or stem table
 - In ascending or descending order if all options are one word
 - By length (ascending/descending), if phrases
 - If graphics only, arrange in logical order
- Column headings should be bolded, centered, and boxed and have no shading.
- Row headings should be normal weight text and have no shading.
 - Left align row headings when one or more headings have more than one word
 - Center row headings that are a single word or number

Human Readable Rubric

- Use quotes to reference the row and column headings in the interaction.
 - Row and column heading references are capitalized as they are in the interaction.
 - Row and column headings with no text should be described. Example: the picture of a new moon
- Example:

A full-credit (1 point) response includes The student selected:

• "Blue" and "Green" for "Reflected"

- AND
 - "Orange" and "Yellow" for "Absorbed"
- AND
 - Nothing else

Exemplar: Include a correctly completed table.

Table Input Interaction

Table input interactions allow the student to enter numbers, symbols, and/or words into the cells of a table.

Task Directions

- Use: "Enter the [number, value, etc.] in the blank box."
- Let the student know if there is more than one correct answer.

Note: For table specifications, see the "Table" section of "Table Match Interaction."

Human Readable Rubric Example:

A full-credit (1 point) response includes The student entered: • "8" for column 2, row 2 AND • "12" for column 3 row 3

Exemplar: Include a correctly completed table.

E. Hot Text Interactions

Hot text interactions allow the students to click on text to "select" it.

Task Directions

• Use "Select the [words, sentences, etc.] that ..."

Human Readable Rubric Example:

A full-credit (1 point) response includes The student selected: • "nucleus" AND • "cell wall"

F. Graphic Response Interactions

Graphic response or "grid" interactions allow students to drag/ drop, draw dots or lines, and/ or use hot spots to complete a diagram or model.

Note: See the "Graphs" section of Part IV for graph specifications.

Task Directions

- Response boxes contained in the grid background are referred to as "blank boxes" in task directions and guidelines.
- References to "correct," "appropriate boxes," etc., in the task directions and guidelines should be avoided.
- To help the student navigate the various components of the item, use consistent language in the stem, palette objects, and answer space.
 - For example, if the item is about Jupiter, the various components of the item should use the word "Jupiter" and not the more general reference to "planet."
 - If the palette objects are referred to as "birds" in the task directions, they should be referred to as "birds" in the guidelines as well.
 - This consistency should be extended to the scoring assertion rationales.
- Whenever possible, refer to the material in the answer space in specific terms ("in the picture," "in the table," "in the graph," etc.). Do not use the terms "graphic," "image," or "answer space."
- References in the stem to diagram headings and grid background titles should be in the same capitalization as in the headings and titles but should not be bolded.
- Whenever possible, refer to the palette objects and groups of palette objects in specific terms (e.g., "chemical elements").
 - Reference to two or more palette objects should be lowercased.
 - If the palette objects are just pictures, lowercase the references to them in the stem.
 - Reference to a specific palette object in the stem should use the same capitalization as in the palette object labels.
- If it is not possible to refer to palette objects in specific terms, then:
 - A palette object that includes a picture, with or without a label, is referred to in the item as an "object/picture/diagram."
 - A palette object that is text only can be referred to as a "label/name."
 - A mixed collection of palette objects can be referred to as "object/label."
 - **Do not** use the term "palette object."
- **Palette Bar Drag and Drop Interactions:** For interactions where palette objects appear in the left palette bar, use the verb and preposition "Place ... in ..." in task directions. Also, refer to boxes with dashed lines as "blank boxes." (Note: Do not use the term "drag.")
- **Pre-placed Drag and Drop Interactions:** For interactions where palette objects are preset in the gray pre-placed box in the grid background, use the verb and preposition "Move ... into ..." in task directions. Also, refer to boxes with dashed lines as "blank boxes." (Note: Do not use the term "drag.")
 - Pre-placed interactions should **not** have a Delete tool. The student will not be able to get the palette object back once it is deleted, so the tool is not needed.
- **Hotspot Interactions:** Interactions that allow students to select multiple words, text graphics, etc. on the background in order to complete their machine scored constructed response. For these interactions, use the verb "Select ..." in task directions.
- **Hotspot Bar Graph Interactions:** Interactions that allow students to construct a bar graph. For these interactions, use "Click on a line to show where the top of each bar should be" in the task directions.
 - Note: Bar graph interactions should have only 'select' hotspots. Do not add 'hover' hot spots for any grade level. This is consistent with AIR math item development.
- **Graphing Interactions:** Interactions that require the student to use the "Add Point,"

"Connect Line," and/or "Add Arrow" tools. For these interactions, use the verb "Use ..." in

the task directions; also, use the term "tool," not "button" (e.g., "Use the Add Point tool to ...").

- Note: Interactions that contain the "Connect Line" and/or "Add Arrow" buttons must also have the "Add Point" button. Buttons should be in the following order: Delete, Add Point, Connect Line, Add Arrow (single), Add Arrow (double).
- When applicable, the following guidelines should be included:
 - "Use only one [palette object] in each blank box you fill in."
 - Note: this is used in all drag and drop items in which only one answer is required or fits in each blank box. Also, the word "one" should be bolded.
 - "The [palette objects] may be used once, more than once, or not at all."
 - "The [palette objects] may be used more than once."
 - "Not all [palette objects] may be used."
 - Note: this is used when the number of palette objects equals or exceeds the number of blank boxes.
- The guidelines above may vary in language in order to reference specific aspects of an interaction.
 - Use specific references to the object, rather than the word "object," when possible. If not possible, use "object."
 - For items that have only labels and no objects, use "label."
 - For items that have only one box to fill in, use "the blank box."

Human Readable Rubric

- It is not necessary to use quotes for references to palette objects or graphic labels in written rubrics.
- Palette objects with text are capitalized as their labels are capitalized, and are not described as "the 'Maple Tree' object."
- Palette objects or response box locations with no text should be described. Example: "the picture of a new moon."
- Example:

A full-credit (2 point) response includes

The student placed:

- Only the red bird in the smallest birdhouse region
- AND
 - Only the black bird on the power lines OR on the roof
- Exemplar: Include a snapshot of the correct response.

G. Simulation Interactions

Simulation interactions allow the student to investigate a phenomenon by selecting variables to get output data. Some simulations are accompanied by animations.

Task Directions

Simulation directions should be as clear and simple as possible.

- State the task clearly and concisely.
- Use either "controlled experiment" or "investigation" when discussing the type of activity the student is using the simulation for.
- Include the directive to either "Click on Start to [run a trial, see the results, etc.]" or "Click on Run to [run a trial, see the results, etc.]" depending on whether the button says "Start" or "Run."
- State the number of trials that can be run.
- A guideline should always be included informing the student as to whether they can delete trials using the trash can icon or not.
- Provide the student enough direction that they will provide the information needed for scoring.

Examples (prompt only):

Use the simulation to gather measurements that can be used to predict the weather.

Use the simulation to test prototypes for the design.

Example (prompt with guidelines):

Use the simulation to conduct a controlled experiment to determine what makes the balloon float.

- You will be limited to **five** trials.
- Click on Start to run a trial.
- Click on the trash can at the end of the row to delete a trial and generate new data.
- You will be scored only on the trials present in the simulation table.

Layout

Layouts of the simulation will vary due to content being investigated.

Animations

Animations within a simulation should follow the standard animation guidelines. Animations should be as short as possible in order to decrease the amount of time spent on the simulation by the student. Use the directive to "Click on the small gray arrow to start the animation ..." OR "Click on the small gray arrow to watch [Earth revolve around the sun, the rabbit come out of its hole, etc.]."

• Animations within a stimulus should be no wider than 350 pixels to avoid horizontal scrolling.

Output Table

Output tables should follow the same format and style of data tables presented in text.

Human Readable Rubric

- Students are scored on their decisions during the investigation.
- The combination of variables needed for each score point should be listed.
- Example:

A full-credit (3 point) response includes

```
The student ran trials with the following variables:
```

```
• "blue," "heavy," and "square"
```

- AND
 - "yellow," "heavy," and "square"

AND

- "blue," "light," and "square."
- Exemplar: Include a snapshot of a correct output data table.

H. External Copy Interactions

External copy items allow the student to select text from the stimulus to copy into the answer space.

Task Directions

- Click on the first pencil icon.
- Then, click on a highlighted step [or "section from the passage"*] to make your first selection. Click on the other pencil icon(s) to make your remaining selection(s).
- Click on the circular arrow that follows any selection you would like to change.

*Or "source(s)," "part C," or any other text that will become highlighted by the pencil; do not use "stimulus."

Note: When the student is directed to complete a model, causal chain, steps in a process, or similar task, and the steps are given in a list, cite in the introduction to the list and in the item prompt that they are out of order and should be placed in order. (But see note in section C, Edit Task Inline Choice [ETC] Interactions.)

Human Readable Rubric

The human readable rubric outlines correct responses to the item.

Example:

A full-credit (1 point) response includes The student selected: • "the flower is red" AND • "the flower is blue"

E. Equation (EQ) Editor Interactions

Equation (EQ) Editor interactions allow the student to enter numbers, symbols, etc. into the answer space by either typing them manually or by using the built-in keyboard.

Task Directions

• Use "Enter the [equation, number, value, etc.] in the blank box."

Human Readable Rubric Example:

```
A full-credit (1 point) response includes
The student entered the equivalent of:
• "10.512"
AND
• "5k - 20y"
```

Keyboard

The keyboard is tailored to what the student needs to complete each interaction. Always include the absolute minimum number of buttons that the student will need.

The default keyboard includes a number pad, two fraction buttons, operators, and inequality symbols (see Default graphic below). *Always remove the standalone fraction button.* Also, remove the inequality symbols if they will not be used. This leaves the standard keyboard with the number pad, one fraction button, and the operators (see Standard—Revised Default graphic below).

Interaction Name Place in Passage Section Tutorial ASL Video HVR Configurator Add Row : ✓ Add Tab : ✓ Add Button : ✓ Version : Modern Keyboard (inline/floating) ▼		Default	
 Place in Passage Section Tutorial ASL Video HVR Configurator Add Row : ✓ Add Tab : ✓ Add Button : ✓ Version : Modern Keyboard (inline/floating) ▼ 	Interaction Name	Editor	
Show Keyboard :	Place in Passage Section Tutorial ASL Video HVR Configurator Add Row : ✓ Add Tab : ✓ Add Button : ✓ Version : Modern Keyboard (inline/floating) ✓ Keyboard Style : floating ✓ Show Keyboard :	+ x Answer Box • • • • • • • • • • • • • • • • • • •	

Operators at Different Grade Levels

• To change the operators on the keyboard, click "Add Row."

Operators for grades K–5

- This is the default. It can be selected as "Operations."
- The multiplication symbol is x.

ASL Video	
HVR	1 2 3 + - × ÷ Delete
	4 5 6
Configurator	789
Add Row :	
Operations 🗸	
Add Tab : 🗸	
Add Button :	

Operators for grades 6–12

- Select "Operations_After_Grade_6."
- The multiplication symbol is *.

	1 2 3 + - * ÷ Delete
Configurator	4 5 6
Add Row :	
Operations_After_Grade_6 V	Delete
Add Butter :	
Add Button :	

F. Data Exploration Interactions (TUVA Graphs)

Task Directions

Graph 1 allows you to select which data to place along the x- and y-axes. You may make several graphs as part of your investigation of the data.

- To make a graph, click on an attribute and then click in the blank box that represents either the *x* or *y*-axis.
- You can change the way the graphed data appear by using the toolbar at the top.
- You may place more than one attribute on each axis by dragging the attribute to the small "+" sign to the left of or below the current attribute.
- To change your selection, click on the small "x" to remove an attribute from that axis, and then add a new one.

Part III: Number Treatment Style Conventions

A. Treatment of Numbers

Note: This section provides GENERAL guidelines for the treatment of numbers. These guidelines are applicable to ALL content areas.

Words vs. Numerals

Use **words** for

- Numbers zero through nine, with the exceptions in this section.
- Numbers that appear as the first word in a sentence (content specialist determines exceptions).

Acceptable 10 mice are white.

Preferred Ten mice are white. OR There are 10 white mice.

Use **numerals** for

- numbers 10 and above.
- numbers that precede abbreviated units of measure.
- numbers that precede or follow symbols: 10%, \$20.00.
- numbers that appear in equations/expressions.
- numbers used to solve mathematical problems.
- numbers included in parts of published works: volume 2, chapter 4.
- dates and years: 1000 BC; December 1, 1975.
- times of day that precede the abbreviations a.m. and p.m.: 11 a.m., 3:00 p.m.
- telephone numbers.

In lists and series of numbers, use either words or numerals consistently.

Pat observes the following insects: 10 ants, 5 flies, and 2 crickets. A circle graph is divided into five sections labeled 3, 6, 9, 12, and 15.

Note: The content specialist determines whether to use words or numerals when guidelines for the treatment of numbers contradict one another.

Ordinals

- Spell out ordinals first through ninth.
- Use numerals for ordinals 10th and above; when numerals are used, suffixes are set on the baseline, not in superscript.
- In lists and series of ordinals, use either words or numerals consistently.

The student finished the race in second place. The 25th customer to enter the store today will win a prize.

Commas in Numbers

Use a comma in

- numbers with five or more digits: 50,000.
- numbers with four digits only if other numbers in the item have five or more digits.

The teacher has driven his car a total of 28,000 kilometers in three years. He drove 6,000 kilometers the first year.

• numbers written as words: one million, eighty-seven thousand, three hundred twenty-two.

Do **not** use a comma in

• numbers with four digits (unless other numbers in the item have five or more digits).

The teacher drove her car 836 kilometers in August, 1027 kilometers in September, and 914 kilometers in October.

• compound measures, such as height measurements: 12 meters 50 centimeters—not 12 meters, 50 centimeters. (Note: In most cases, use 12.5 meters.)

Values Less Than One

- Use singular units of measure with values less than one: 0.25 gram, not 0.25 grams.
- Include a zero before the decimal point in decimal values less than one: 0.15, not .15.

Negative Numbers

Use a mid-point en dash to indicate negative numbers. Which point has the coordinates (2, -5)?

Fractions

The content specialist determines whether fractions are spelled out or expressed as numerals.

- As words, fractions are hyphenated as nouns, adjectives, and adverbs. Two-thirds of the students in the class ride the bus.
- As numerals, fractions are stacked vertically and appear at 90% of the base text size:

14 pt. = 12.6 pt.

A student gave $\frac{1}{4}$ of her sandwich to her friend.

Percentages

- Use the word percent after a number word. Five percent of the dogs have spots.
- Use the word percentage, not percent, as a stand-alone term. What percentage of the cats are white?
- Use the percent symbol after a numeral: 5%. (See "Symbols and Special Characters" in Part V for the preferred styles for symbols and special characters.)

Of the marbles in the jar, 40% are red and 60% are blue.

Exponents

Exponents and other superscripted characters are scaled to 70% of the base text size: 14 pt. = 9.8 pt.

 $s^2 \times 7 = 28$

Ratios

Use a colon in ratios. Do **not** insert a space before *or* after the colon.

The ratio of solute to red solvent is 1:4.

Coordinates and Ordered Pairs

- Enclose coordinates and ordered pairs in parentheses.
- Include a comma, followed by a space, after the first number.

Point A has the coordinates (3, 4).

• Include a space after the name of a point that precedes coordinates or ordered pairs.

Line m begins at point A (2, 5) and ends at point B (-1, -3).

Dates

- *Abbreviated years:* Avoid abbreviating years whenever possible. When a year is abbreviated, the first two numbers are replaced by an apostrophe (not an opening single quotation mark): the blizzard of '76.
- *Months and days:* In running text, dates are written in the following form: February 10, 2012.
- *Centuries:* Centuries are spelled out and lowercase: the twenty-first century, nineteenth-century literature.
- *Decades:* Decades can be spelled out or expressed as numerals; if spelled out, they are lowercase: the nineties, the 1990s. (Note that no apostrophe is used in the plural form of decades.)
- *Eras:* Eras are expressed as numerals: 55 BC, AD 1066. (Note that BC and BCE follow the date, while AD and CE precede the date. All four abbreviations are uppercase with no periods.)

Times of Day

The content specialist determines how to present times of day in individual test items. The following conventions should be applied based on the presentation selected:

• Use numerals with the abbreviations a.m. and p.m. (Note that the abbreviations are lowercase with periods.) It is redundant to include phrases such as "in the morning," "in the afternoon," or "at night" after a.m. or p.m.

The student wants to see a movie that starts at 4:10 p.m.

• Spell out numbers used with the term "o'clock."

The student leaves for school at eight o'clock.

• To avoid confusion, spell out the terms noon and midnight (in place of 12 a.m. or 12 p.m.).

The student works from 6:30 p.m. to midnight.

B. Equations / Expressions and Patterns

General Guidelines

- In general, equations and patterns are 14 pt. Verdana; however, the font sometimes varies for equations and patterns that include symbols.
- In introductory statements, use the term "equation" or "expression" to refer to an equation or expression. Do not use the term "number sentence."
- Use the term "pattern" to refer to patterns of numbers and patterns of symbols.
- Use the term "step" to refer to the position of a term in a pattern: the fifth step in the pattern.
- In items, equations are center-aligned and can be given the headings "Equation 1," "Equation 2," etc.
- See "Graphics and Other Stimuli in Items" in Part I for additional guidelines.

Variables and Symbols

• In general, variables are lowercase and italicized. (However, variables in provided formulas can be uppercase or lowercase, as tradition and context dictate.)

Solve for *x*. formula for area: A = Iw

- In grades 3–5, use boxes to indicate missing/unknown values in equations.
- In grades 6 and above, use variables or boxes to indicate missing/unknown values in equations.

6 + n = 12

• In all grades, use a question mark or underscored blank space to indicate missing terms in patterns. (The content specialist determines whether to underscore the question mark.)

2, 4, ?, 8, 10

Operational Symbols

See "Symbols and Special Characters" in Part IV for a complete list of operational symbols used in Mathematics as well as the preferred styles for symbols and special characters used in item text and graphics. See "Words vs. Symbols" in this section for information about using words and symbols to identify geometric objects in running text.

Multiplication symbols.

• In grades 3–5, use the multiplication symbol.

8 × 7

• In grades 6 and above, use the product dot or do not include a symbol. (Do not use the × symbol, except in scientific notation, to avoid confusing with the variable *x*.).

8 • 7 (10 - 2)(7)

• In all grades, use the multiplication symbol in scientific notation.

 5.02×10^{6}

C. Units of Measure

When to Abbreviate

- Spell out units on their first usage in a cluster stimulus or in an item stem followed by the abbreviation in parentheses.
- Abbreviate units thereafter in item stems or options.

Stephanie has 15 pieces of string. Each piece is 5 meters (m) long. How many meters of string does Stephanie have altogether?

- A. 25 m
- B. 50 m
- C. 75 m
- D. 100 m
- Spell out units in tables (See "Units of Measure" in Part IV for additional information.)
- Abbreviate units in graphics. (See "Units of Measure" in Part IV for additional information.)

Abbreviations

Note: Do not include periods in abbreviated units of measure.

Metric Units

Table 4 shows the correct abbreviations for metric units of measure.

Table 4. Abbreviations for metric units of measure

Unit	Abbreviation
Millimeter	mm
Centimeter	cm
Meter	m
Kilometer	km
Milligram	mg
Gram	g
Kilogram	kg
Milliliter	mL
Liter	L

kilogram-meter per second = kg·m/s

Here is a link to SI units to use as a resource: <u>https://www.nist.gov/pml/weights-and-measures/metric-si/si-units</u>

Hyphenated abbreviations used with numbers as modifiers are not hyphenated.

Example: a 10 m pole, a 10-meter pole

Temperature Units

Table 5 shows the correct abbreviations for units of temperature.

Table 5. Abbreviations for units that measure temperature

Unit	Abbreviation		Unit	Abbreviation
degrees Celsius	°C		degrees Fahrenheit	°F
Kelvin	К	-		

Note: Degrees Fahrenheit is preferred when discussing weather or body temperature.

Time Units

Table 6 shows the correct abbreviations for units of time.

Table 6. Abbreviations for units that measure time

Unit	Abbreviation	Unit	Abbreviation
Day	day	Hour	hr
Minute	min	Month	mo
Second	S	Year	yr

Plural Units

• Do not add an "s" for plurals of abbreviated units.

Melissa is making 10 identical saltwater solutions. She needs 100 milliliters (mL) of distilled water to make 1 solution. How many milliliters of distilled water does she need to make 10 solutions?

- A. 10,000 mL
- B. 1,000 mL
- C. 100 mL
- D. 10 mL
- Use a singular verb with physical quantities. How many grams (g) of silver is produced?

Punctuation and Spacing

- Do not include periods in abbreviated units: cm, s, cm, m/s²
- Do not include commas in compound measures, such as height measurements: 12 meters 50 centimeters—not 12 meters, 50 centimeters. (Note: In most cases, use 12.5 meters.)
- Include a space between numerals and abbreviated units, except in temperatures: 30 cm, but 90°F.
- In temperatures, do **not**
 - include a space between the numeral and degree symbol, or between the degree symbol and the unit: 0°C.
 - use a degree symbol with the abbreviation for kelvin: 223K not 223°K.
 - There is also NO space between number and degree symbol or directional in longitude or latitude measurements: 90°N.

Square and Cubic Units

- When units are spelled out, spell out the terms square and cubic.
- When metric units are abbreviated, use superscript to show square and cubic units.

```
The student drew a square with a side length of 6 centimeters (cm). What is the area, in square centimeters (cm<sup>2</sup>), of the student's square?
```

- A. 15 cm²
- B. 30 cm²
- C. 36 cm²
- D. 54 cm²
- When customary units are abbreviated, use sq and cu for units.

83 sq m

Conversions

The content specialist determines whether to include conversions in items.

• When included, conversions are enclosed in brackets after the punctuation mark at the end of the stem. The conversion itself includes no punctuation.

```
What is the volume of the rectangular prism?
[1000 milliliters (mL) = 1 liter (L)]
```

• Use an equal sign in conversions that involve units of measure; always position the value with the smallest unit on the left side of the equal sign.

```
What is the area, in square meters (sq m)?
[100 centimeters (cm) = 1 meter (m)]
```

• Use the term "represents" in conversions that involve scales or that assign a value to a graphic.

What is the total area of the grid? [" represents 1 unit]

Pi

If an approximation for pi is desired to be given in a particular item, the value of pi should also be enclosed in brackets at the end of the item stem. However, the value is stated as a sentence that ends with a period.

What is the height of the cylinder? [Use 3.14 for π .]

D. Preferred Language

Conditional ("if") Clauses

Recast conditional clauses (e.g., "If this happens ...?") when possible. If a conditional clause cannot be avoided, position it at the end of the sentence.

Let x = 7. What is the value of y? not If x = 7, what is the value of y? The pattern continues. Which shape will be in step 25? not If the pattern continues, which shape will be in step 25?

Table vs. Chart

• Use "table" when data are organized and related in some way.

The student recorded the measurements in the Volume of Water vs. Height of Plants table.

• Use "chart" when data are not organized to emphasize comparison among discrete items or related in any way (e.g., data that are listed).

The Fancy Pens chart lists the types and colors of pens the student can buy.

Percent vs. Percentage vs. %

- Use the word "percent" after a number word.
- Use the word "percentage" as a stand-alone term: a percentage of students.
- Use the percent symbol after a numeral.

A student has 20 folders. Each folder is either red, green, or yellow. Twenty percent of the folders are red. Forty percent of the folders are green. What percentage of the folders are yellow?

- A. 20%
- B. 30%
- C. 40%
- D. 50%

Constructed-Response Items

• Include units of measure in the stem so that students are not penalized for omitting units from their responses. Also, CR stems should be worded as imperatives (e.g., "Calculate the area"), not questions (e.g., "What is the area?").

Calculate the area, in square meters (sq m), of the garden.

• In sentences that refer to item parts, the word "part" is lowercase and the part letter is capitalized.

Identify the statement that supports the choice in part A.

• The content specialist determines the language of statements that ask students to justify their answers.

Show your work. Explain your reasoning. Show or explain how you got your answer. Show or explain how you know your answer is correct.

Part IV: Graphic Specifications

Note: The specifications in this section are for all graphics, including graphics used in technology-enhanced interactions (TEIs).

A. Text Elements

This section provides specifications for text elements that appear in graphics.

Fonts

In general, text in graphics is Verdana. However, exceptions are made for graphics that require a special look (e.g., advertisements, posters). Table 7 shows general font specifications for different text elements in graphics.

Font Specifications		
Text Element	Font	
Title	 14 pt. Verdana Bold Title case	
Headings (e.g., axes headings, column headings)	 14 pt. Verdana Bold Title case	
Labels and text	14 pt. VerdanaSentence case	
Credit lines	 10 pt. Verdana Lowercase	

Table 7. Genera	l font specifications	for text elements in	n graphics
-----------------	-----------------------	----------------------	------------

Note: At this time, Verdana is specified as the primary font for test content. However, another font may be chosen upon further analysis of the effects that fonts have on readability and students' ability to retain information.

Symbols and Special Characters

The table that follows shows the preferred styles for symbols and special characters. These specifications apply both to symbols in graphics and symbols in text, with the exceptions noted.

- In graphics, the size and style (e.g., boldface, italic) of a symbol depends on where it appears in the graphic. For example, a symbol that is part of a title is 14 pt. and boldface. Use Table 7 in the previous section to determine the correct size and style of symbols.
- In items, symbols are the same size and style as the surrounding text.

Table 8. General font specifications for symbols and special characters in graphics and text

Font Specifications for Symbols and Special Characters			
Symbol/Character	Font	Description	
&	Verdana	AmpersandDo not use in science	
©	Verdana	 Copyright symbol Used in acknowledgments and credit lines 	
\$2.00	Verdana	 Dollar sign/cent symbol Used in dollar amounts 	
50¢			
%	Verdana	Percent symbolUsed in percentages	
1	Verdana	Smart (curly) apostropheUsed in possessives	
1	Verdana	 Prime mark Used to indicate prime numbers 	
6	Verdana	 Okina Glottal stop used to spell Hawai'i 	
0°C	Verdana	 Degree symbol Used in temperatures and angle measures 	
45° angle		 No space between number and degree symbol or between degree symbol and unit of measure 	
+	Verdana	 Addition symbol Used in equations/expressions 	
_	Verdana	 En dash Used as subtraction symbol in equations/expressions; also used in number ranges and with negative numbers 	
×,•	Verdana	 Multiplication symbol and product dot Used in equations/expressions 	
Font Specifications for Symbols and Special Characters			
--	-------------	--	--
Symbol/Character	Font	Description	
÷	Verdana	Division symbolUsed in equations/expressions	
=	Verdana	 Equal sign Used in equations/expressions 	
$\frac{1}{2}$	Verdana	 Vertically stacked fraction Scaled to 90% of text size: 16 pt. = 14.4 pt.; 14 pt. = 12.6 pt. 	
П	Symbol Std.	 Pi Not italicized Used in equations/expressions 	
~	Verdana	 "Similar to" symbol Used to indicate similar lines, shapes, and angles 	
(4, 3)	Verdana	 Coordinates and ordered pairs Enclosed in parentheses Comma, followed by space, after first number 	
1:2	Verdana	 Ratio No space before <i>or</i> after colon 	
$V = I \times w \times h$	Verdana	 Variables Uppercase or lowercase, as tradition and context dictate Italicized Used in equations/expressions and formulas 	
х, у	Verdana	 <i>x</i>-axis and <i>y</i>-axis labels Lowercase Italicized Used to label <i>x</i>- and <i>y</i>-axes in line graphs, scatter plots, and coordinate grids 	

Table 8. General font specifications for symbols and special characters in graphics and text (cont.)

Font Specifications for Symbols and Special Characters			
Symbol/Character	Font	Description	
А, В, С	Verdana	 Point label Boldface, italicized, uppercase letter (in graphics only; see "Points" in Part IV for point labels in text) Used to label points and other geometric objects 	
1st, 2nd	Verdana	OrdinalsPositioned on baseline (not superscripted)	
13 ²	Verdana	 Superscript Scaled to 70% of text size: 16 pt. = 11.2 pt.; 14 pt. = 9.8 pt. Raised by 33% with a baseline shift of +6 	
H ₂ O	Verdana	 Subscript Scaled to 70% of text size: 16 pt. = 11.2 pt.; 14 pt. = 9.8 pt. Lowered by 33% with a baseline shift of -6 	
9:00 a.m. 3:00 p.m.	Verdana	 Used to indicate times of day Lowercase (not small caps) 	
100 BC/BCE AD/CE 1800	Verdana	 Used to indicate eras, epochs, etc. Uppercase (not small caps) 	

T-1-1-0	Caral	Court and a stift and the second	f	and a second second	and a second and a second second	and a last a second state	
I ANIE X	(-eneral	TONT SPECIFICATIONS	tor sympols	and special	characters in (arannics and t	ext(cont)
rubic 0.	General	Torre opecations	101 391110013	und special	churacter 5 m	grupines unu t	
			,			5 1	· · ·

Note: Symbols and special characters are used at the content specialist's discretion.

B. Graphic Size

Graphics should be

- large enough for students to read text and view content.
- small enough to fit in the viewing area on the computer screen. Students should not have to use horizontal scrolling to see an entire graphic.
- free of excess white space. Condense graphics as much as possible without compromising legibility and font size.

About Image Dimensions

The table below provides the recommended maximum image dimensions (in pixels) you should use for each item layout in order to avoid forcing students to view the item's content on a standard 1024 x 768 monitor. These dimensions should not be regarded as absolute restrictions but as suggested guidelines to consider when inserting images in IAT.

	Stem Max Image Width	Stem Max Image Height	Passage Max Image Width	Passage Max Image Height
Layout 1	600	590		
Layout 2	400	450		
Layouts 3 & 4	400	450		
Layout 5	600	400		
Layout 6	600	400		
Layout 8				
Layout 12				
Layout 13				
Layout 14	600	450		
Layout 15				
Layouts 11 & 17	360	250	590	590
Layout 21	570	250	400	590
Layout 22				
Layout 23	960	250	980	250
Layout 24 & 29	600	250	380	590
Layout 25	670	250	290	590
Layout 26	470	250	500	590
Layout 27 & 28	270	250	700	590
Layout 32 & 33	960	700		
Layout WAI	960	700	960	700

Scaled Graphics

Graphics that are not drawn to the correct scale are labeled with the phrase "Diagram not to scale." Note that "Diagram not to scale" is not punctuated.

C. Graphic Colors

Although color can be used to enhance the appearance of graphics, it should be used sparingly (at the content specialist's discretion). The use of color introduces special considerations for students with color-vision deficiencies. Use the guidelines that follow to help avoid creating graphics that present challenges for these students.

- Do not design graphics that require students to rely solely on color to obtain information.
- Consider combining colors with pattern fills to assist students who might have trouble using color alone to differentiate graphic elements, such as bars on a graph.
- Use a color-vision deficiency simulator, such as Vischeck or Coblis, to check colors in graphics for possible issues.
- Use the limited color palette shown in the top row of the diagram that follows. The other rows in the diagram show how the colors in the limited palette appear to students with certain color-vision deficiencies.

D. Common Graphic Elements

This section provides specifications for elements that often appear in graphics.

Note: Within individual graphics, the sizes of elements such as points, tick marks, and tallies may be adjusted as needed to emphasize or to de-emphasize certain content in a graphic.

Alignment

Graphics within both the stimulus and the items should be centered on the page.

Units of Measure

In graphics, units are abbreviated or expressed as symbols. (See Part IV for the correct abbreviations of units.) The abbreviated unit or symbol is not preceded by the word *in*.

In graphs and tables, units are enclosed in parentheses after titles or headings.

In tables, do not include the unit in both the column/row heading and in the individual cells in the column/row.

Incorrect:

Correct:

.

Shots Made

Game	Shots Made (%)	
1	65%	
2	70%	

Shots Made

Game	Shots Made (%)
1	65
2	70

The diagram that follows shows some specifications for diagrams.

- A diagram is art used to describe a scientific system; therefore, the diagram must be scientifically accurate, in realistic perspective, and in scale.
- Tabletops are indicated only by a horizontal line at the back of the table. It is generally not necessary to show the legs or front edge of the table. The tabletop is labeled as "Tabletop" without an arrow.
- Diagrams describing a controlled experiment setup should show the system being investigated with both the manipulated and responding variables.
- All the materials of an experiment do not need to be in the diagram.
- Students, when appropriate, may be included in a diagram but the students must be realistic and grade appropriate.
- Text in diagrams should be phrases, not sentences.
- Any diagram in an item that comes from a diagram in the stimulus should be the same.
- Graphics and diagrams are centered.

Arrows

The diagrams that follow show specifications for arrows and arrowheads used in graphics to label diagrams.

- Use number 9 arrowhead in Illustrator.
- The arrowhead of the leader from the label to the object being labeled should touch the outer rim of the object being labeled, not inside the object unless what is being labeled is inside an object. For example, a beaker partially filled with a liquid with an arrow labeling the liquid.
- Arrows may be any size or shape as needed in a specific diagram.
- Curvy arrows are no longer used in science assessments. We are still working to pull together some accurate examples.

Keys and Scales

Keys and scales are used to provide information that helps students understand graphics. The diagram that follows provides specifications for keys and scales that appear in graphics.

Key vs. Scale

Use a key to provide students with information that helps them identify parts of a graphic or interpret information in a graphic. Use a scale to provide students with ratios and conversions.

In the diagrams that follow, Example 1 tells students the values of graphic elements (e.g., bars in a graph, parts of a shape) filled with colors and patterns; Example 2 tells students how to interpret information in a stem-and-leaf plot; and Example 3 provides students with a ratio for converting centimeters to kilometers.

E. Photographs and Raster Images

Table 9 provides general specifications for scanning photographs and raster images. Certain specifications differ for computer-based testing (CBT) and print-based testing (PBT). Raster images should not be converted to a different form like .svg.

Specifications for Photographs and Raster Images			
Specification	Requirements		
File format	- CBT: SVG, PNG - PBT: SVG, PNG		
Image resolution	- CBT: 72 dpi - PBT: 300 dpi		
Color mode	- CBT: RGB - PBT: CMYK		
Dimensions	- Based on test content		
File Size	- < 1 Mb		

Table 9. CBT and PBT specifications for photographs and raster images

Note: Always obtain a high-resolution image that meets the requirements for both CBT and PBT.

Image Improvement

All scanned images should be optimized to represent an ideal tonal range. When scanning images, eliminate any trace of moiré patterns (the line screens that appear when a printed image is scanned). Use the following techniques to help minimize the appearance of moiré patterns:

- Scan images at a 45° angle.
- Set the scanning software to compensate for line screens.
- Apply the Gaussian Blur filter in Adobe Photoshop.

Credit Lines

A credit line must be included for all images taken from copyrighted sources and those with Creative Commons licenses, including print publications, the Internet, stock photo agencies or discs, and other commercial and noncommercial sources. For images that do not appear in selections, credit lines should appear as shown in the examples below. (For information about images that appear in selections, see "Acknowledgments" in Part III.) All photographs and raster images should be enclosed in a box, as shown below.

A credit line should be added by the graphics team as a caption that is part of the image. Credit lines should not be done in the IAT Editor.

Copyright is represented by the copyright symbol. Creative Commons licenses are represented by text in the format of "Licensed under CC BY-SA 2.0," indicating the type of Creative Commons license the image has.

For any license before Creative Commons 4.0, the credit line should include the name of the image. In instances where there are multiple images and one is a 4.0 or later and another is 3.0 or earlier, list the image name for both to be consistent within the item.

The Copyright Attribute in ITS should include the original name of the image, the owner of the image/copyright or license holder, a link to the original image, and a link to the copyright or license type.

F. Graphs

The diagrams in this section provide specifications for bar graphs, histograms, circle graphs, line graphs, and scatter plots.

Bar Graphs

Multibar Graphs

Key

All multibar graphs have keys. See "Keys and Scales" in this section for specifications.

Histograms

Circle Graphs

Points

Line Graphs

Scatter Plots

G. Tables and Charts

The diagrams in this section provide specifications for tables and charts, including pictographs and tally charts.

Text Alignment in Tables

Left align text within a cell when there is more than one word.

Table 1. Title

Text entry here	
Longer text entry here	
Each sentence cased	

Center text within a cell when there is:

- a single word or number
- a combination of words and numbers
- a combination of fractions and mixed numbers

Fra	ctions and Mixed Numbers
Cer	itered

п

Fractions	Mixed Numbers		
$\frac{1}{3}$	7		
$2\frac{3}{5}$	$\frac{1}{4}$		
<u>3</u> 16	300.00		

In columns with numbers only, center the widest number and align other numbers on the ones place or decimal point.

Longest number centered	100	52.8
Rest aligned on ones, decimal, or symbol	2	325.25
	22	1.5

Table 2. Title

In columns with currency only, center the widest value, then: • Align the dollar signs.

- Align dollar amounts on the decimal point. •

Table 1. Title

Dollar signs left-aligned	\$12	2,540.00
Dollar amounts aligned on the decimal point	\$	25.00

Tables

Stacked Tit 14 pt.	le: 14 pt. Leading Verdana Bold	Title Title case Centered above table
Heading	Stacked Heading: 14 pt. Verdana Bold	Column Headings Title case Stacked: 18 pt. leading Horizontally/vertically centered in cell
14 pt. Verdana	\$ 10.00	
Sentence case	\$ 40.00	
Stacked text entry	\$100.00)— Stroke 1 pt. 100% black

Column Width

+0.15" between widest entry in column and table rules

See "Text Alignment in Tables" for row height specifications.

Note: If a cell entry begins with a numeral followed by text, lowercase the first word of the text, just as if the number were spelled out, e.g., use "10 grams," as you would if it were "Ten grams."

Title: 14 pt. Verdana Bold

Heading (\$)	20	30	40	50
Stacked Heading: 5 14 pt. Verdana Bold	6	7	8	9

Row Headings Title case Units of Measure See "Units of Measure" in this section for specifications.

Vertically centered in cell See "Text Alignment in Tables" in this section for additional alignment specifications.

NOTE: ALL TABLES, EXCEPT FOR MATCHING ITEM TABLES, REQUIRE TITLES. TABLES ARE ALL CENTERED.

Pictographs

Apple	Number o	of Votes		
Washington	Š	ŠŠŠ	Objects Evenly spaced Widest group centered;	
Golden	Š	ੱ	other groups left aligned on widest group Vertically centered	
Granny Smith	Š	š	- Row Height All rows equal heights	
Fuji	Š		(height based on size of objects)	
		L	Column Width +0.15" between widest row	
	Key	0.15*/	in column and table rules	
Ŭ	represents 1	Key All pictographs have k Scales" in this section f	eys. See "Keys and for specifications.	

Favorite Kinds of Apples

Note: People and animals should NOT be represented as half symbols in pictographs.

Tally Charts

Heading	Heading: 14 pt. Verdana Bold	
Text	JHT	
Text entry		
14 pt.		
Verdana	HH.	
Sentence case	JHT I	

Title: 14 pt. Verdana Bold

Tally Marks Height: 0.25" 1 pt. 100% black Evenly spaced Widest entry centered; other entries left aligned on widest entry Vertically centered

H. Coordinate Grids

The diagrams in this section provide specifications for coordinate grids, including coordinate grids with plotted points, lines, and shapes.

Tick Marks

Height: 0.1" 1 pt. 100% black Evenly spaced Aligned with grid lines (if applicable) Centered on axis line individually and as a group Must be included on ALL coordinate grids

Plotted Points and Shapes

Plotted Lines

Note: Use graphing software to ensure that lines are accurately plotted on coordinate grids.

I. Other Types of Graphics

The diagrams in this section show specifications for miscellaneous graphics, including number lines, box-and-whisker plots, line plots, stem-and-leaf plots, spinners, maps, and graphic organizers.

Number Lines

J. Animations

- Graphics for animations and simulations follow three-dimensional science graphics style guidelines.
 - \circ $\,$ Animation art style should not be different from those produced for APG static images.
- Dimensions for animations and simulations:
 - $\circ~$ In a stimulus: animation can be no wider than 350 pixels to eliminate horizontal scrolling.
 - In a simulation: dimensions are predetermined by the item layout.
- Animations, graphics, and simulations must have file sizes that keep the entire item or cluster's file size under 500 kb.
- Animations and simulations should be short and succinct as to reduce the amount of test time spent running them.
- For animations (not simulations), include the directive "Click on the small gray arrow to start the animation ..." OR "Click on the small gray arrow to watch [Earth revolve around the sun, the rabbit come out of its hole, etc.]."

Appendix A: Word List

Word List

This appendix provides guidelines for the capitalization, hyphenation, and spelling of terms. See "Compound Terms" in Part I for additional guidelines.

Α

AD (uppercase; precedes date)

a.m. (lowercase)

В

```
BC/BCE (uppercase; follows date)
```

big bang theory (lowercase)

С

criterion (singular), criteria (plural)

cutout (n, adj), cut out (v)

D

data are (plural)

Е

Earth, in reference to the planet (not used with the article the)

earth, in reference to earth material (used with the article the)

eastern hemisphere (lowercase)

equator (lowercase)

F

fall (season)

Force is greater, not larger: According to Sir Isaac Newton's Law of Universal Gravitation, all objects that have mass are attracted to each other. Mass is the measure of an object's matter (what it's made up of). The greater an object's mass, the greater its gravitational force.

flowchart (per Webster's)

fresh water (n), freshwater (adj)

full-size (adj)

Н

the Hawaiian Islands, but the island of Hawaii

high-pressure (adj), high pressure (n)

Κ

kinetic energy (KE)

L

landfall

Law – uppercase in terms like "Newton's First Law" or "Coloumb's Law"

life cycle

life-span

lightbulb

Μ

moon

Ν

northern hemisphere (lowercase)

Ρ

potential energy (PE)

R

rain forest (n)

round-trip (n, adj)

S

salt water (n), saltwater (adj)

setup (n), set up (v)

solar system

southern hemisphere (lowercase)

spring (season)

summer

sun

Т

tide pool

tidewater

timeline

U

underwater (adj, adv)

W

western hemisphere (lowercase)

Appendix B: Resources, Research, and Bibliography

Recommended Resources

The style conventions and specifications in this document are based largely on information from the sources listed in this section. Refer to these sources for additional information.

Chicago Manual of Style and Words into Type

First published in 1906, the Chicago Manual of Style (CMOS) is one of the oldest and most comprehensive editorial style guides available. The sixteenth edition, published in 2010, was updated in consultation with a broad range of scholars and professionals in the fields of academics and publishing.

Different style guides have different uses. For example, the Associated Press Stylebook is used primarily by journalists, the Publication Manual of the American Psychological Association is used for social science publications, and the MLA Handbook for Writers of Research Papers is most commonly used by writers of research papers in the humanities. CMOS is widely used in educational, scholarly, and trade publishing, as is Words into Type, another well-respected generalpurpose style manual. Both CMOS and Words into Type provide broader coverage of mechanical issues, grammar, and usage than the more specialized style manuals listed above.

Merriam-Webster's Collegiate Dictionary

Because hundreds of new words are added to the English language each year, and preferences regarding issues such as spelling and hyphenation change over time, it's important that publishing professionals use a recent edition of a good dictionary. Merriam-Webster's Collegiate Dictionary is not only one of the most popular dictionaries on the market (as the best-selling dictionary in the United States) but is also recommended by CMOS and used by many educational and academic publishers.

Garner's Modern American Usage

Bryan A. Garner wrote the grammar-and-usage chapter of CMOS, and his usage book is an appropriate companion to CMOS, significantly expanding on the usage guidelines provided in chapter 5 of CMOS. Garner's Modern American Usage is considered one of the best books available on contemporary usage. Garner takes a prescriptive approach, which means that his usage guidelines are based on established norms and rules for the way language should be used.

The Copyeditor's Handbook: A Guide for Book Publishing and Corporate Communications

Amy Einsohn, the author of The Copyeditor's Handbook, has twenty years of experience as a professional editor and teacher of copyediting classes and is highly regarded in the copyediting community. Her book, which addresses the ABCs of copyediting, editorial style, and language editing, is intended to be used as a tool for self-instruction or a textbook for copyediting classes. The Copyeditor's Handbook has been recommended by current and former editors at CMOS, including Carol Fisher Saller and Margaret Mahan.

Support for Selected Style Preferences

Emphasis Terms

The treatment of various elements of style, including emphasis terms, varies according to the preferences of the user, but it is recommended that emphasis terms in test items be set in boldface. The publication Considerations for the Development and Review of Universally Designed Assessments¹ cites the following arguments for and against the various treatment options for emphasis text:

- Standard typeface, uppercase and lowercase, is more readable than italic, slanted, small caps, or all caps (Tinker, 1963).
- Text printed completely in capital letters is less legible than text printed completely in lowercase, or normal mixed-case text (Carter, Dey, and Meggs, 1985).
- Italic is far less legible and is read considerably more slowly than regular lowercase (Worden, 1991).
- Boldface is more visible than lowercase if a change from the norm is needed (Hartley, 1985).

Ten style guides from Smarter Balanced states and the consortium were evaluated. Seven of the ten recommended the use of boldface for emphasis terms, whereas one recommended underscoring, another recommended small caps, and the last did not specify. Designers of online content agree that "[o]n the Web, the most common and effective method [for emphasizing text] is the use of a bold face from the current font family."²

In addition, the application of a particular treatment to a style element could prove confusing if repeated to represent another style element: In the Smarter Balanced Style Guide, underscoring is used to designate vocabulary terms. That, combined with the fact that the use of two treatment styles for a single element can appear overpowering, reinforces the recommendation that boldface alone be used for emphasis terms. This recommendation is also supported by the Test Accessibility and Modification Inventory (TAMI).³

Exponents and Superscript

These elements should be smaller than running text and should not be separated from the preceding text by a space. It is recommended that exponents and superscript characters be smaller than running text (scaled to 70% of base print size). Increasing the size of running text around such characters is not feasible, and increasing the size of the characters themselves introduces a risk that students will misinterpret the characters as running text and not as exponents or superscripts.

1 Thompson, S. J., Johnstone, C. J., Anderson, M. E., and Miller, N. A. (2005, November). Considerations for the Development and Review of Universally Designed Assessments (Center on Educational Outcomes Tech. Rep. 42). Retrieved February 6, 2012, from www.cehd.umn.edu/nceo/OnlinePubs/Technical42.htm

2 Hume, A. (2005, December). The Anatomy of Web Fonts. Retrieved February 13, 2012, from //www.sitepoint.com/anatomy<web<fonts

edu/Documents/pdf/PRO/TAMI_CCSSO_Beddow.pdf

The general accessibility guidelines include discussion of magnification tools. In addition, the accessibility spoken/audio business rules provide guidelines on how mathematical notation is to be presented in spoken form. The magnification tools and spoken support should allow students with

³ Beddow, P. A. (2009). Test Accessibility and Modification Inventory: Quantifying and Improving the Accessibility of Tests and Test Items. Presented at the CCSSO 2009 National Conference on Student Assessment. Retrieved February 6, 2012, from http://peabody.vanderbilt.

visual impairment to access all the information available on screen.

In regard to ordinals, it is recommended to use 1st, 2nd, 3rd, etc., rather than 1st, 2nd, 3rd. In this way, the exponent size consideration is avoided, and ordinals are as easily read as other running text on a page.

Typeface: Verdana

It is recommended to use Verdana for onscreen testing materials, for its readability as compared to Times New Roman and Arial. Although other fonts are available that are specially designed to further enhance readability, these custom fonts may not be as widely available on student computers and may require the test delivery system to supply the font as part of system installation.

Serif fonts (e.g., Times New Roman), which are popular in print, can appear pixilated and blurred onscreen. In contrast, "the straight, low contrast, open strokes of a sans-serif font, such as Verdana, will always leave a good impression on-screen."4 Verdana, which was designed for the screen, offers a generous amount of white space both between and within (glyphs) the characters. Currently, it is the most commonly used font on the Web, owing to its marked legibility on screen.

Preparation of Materials for Persons Who Have Color Vision Deficiencies

Color is one of the most important aspects of visual communication and can be employed to generate interest or to communicate ideas or feelings. Yet colors for an audience with members who have color discrimination problems should be selected carefully to avoid conveyance of unintended meaning. This is especially true in educational and testing materials. Many of these materials rely on good color perception for the interpretation of graphs, charts and illustrations. Yet even the most carefully thought-out graphic may lead the user to an incorrect answer because of poor color selection.

- Select colors carefully. Besides black and white, most color blind individuals can only see two colors, blue and caramel (golden brown). Red, yellow, orange, and green take on shades of caramel; purple takes on shades of blue when viewed by a person with colorblindness.
- Less is more. Too many colors used thoughtlessly can confuse and negate the message of a graphic. Settle on four or fewer colors and stick with them. Black and white are counted as colors when designing graphics, even though they are not usually considered colors when talking about vision.
- **Use contrasting colors.** Contrast is an important influence on the legibility of graphics, especially for persons with color discrimination problems. Substantial contrast, i.e., the use of dark values with light values, between the color of the foreground and the background should be employed. High contrast makes materials easier to read by both persons with colorblindness and those with typical vision. Light letters on a dark background or dark letters on a light background are most legible, but remember the actual colors of those combinations are important.

Contrasting Colors Appropriate for Persons with Color Perception Difficulties (in order of best contrast value)

- Use black and white.
- Use dark blue and white.
- Use black and bright yellow.
- Use dark blue and bright yellow.
- Use dark brown and white.
- Use pale blue and black.
- Use yellow and purple.

Notice that yellow is recommended as a common color for graphics to be used by persons with poor color discrimination. This is because yellow maintains luminance longer than any other color. Even though it is perceived as a light caramel color by persons with color blindness, it holds its brightness longer than any other hue, and therefore maintains its contrast when paired with a dark color.

Color Combinations to Be Avoided

- Avoid gray with any color, even another value of gray.
- Avoid red with any color except white or blue.
- Avoid green with any color except white.
- Avoid brown with any color except white or blue.
- Avoid purple with any color except yellow or white.
- Avoid orange with any color except blue or white.
- Avoid two values of the same color, such as light blue and dark blue.
- Avoid a neutral color with any other neutral color.

The importance of proper attention to color selection cannot be overlooked when developing tests for individuals or groups that have color vision or color perception deficiencies.

Source:

Allman, C. B. (2009). *Making tests accessible for students with visual impairments: A guide for test publishers, test developers, and state assessment personnel.* (4th ed.). American Printing House for the Blind.
Bibliography

- Apple Publications Style Guide. (2009, December). Retrieved from https://developer.apple.com/library/safari/#documentation/UserExperience/Conceptual/A PStyleGuide/ APSG_2009.pdf.
- Barr, C., and Yahoo! Senior Editors. (2010). *Yahoo! Style Guide: The Ultimate Sourcebook for Writing, Editing, and Creating Content for the Digital World*. New York: St. Martin's.

Chicago Manual of Style (16th ed.). (2010). Chicago: University of Chicago Press.

Einsohn, A. (2006). *The Copyeditor's Handbook: A Guide for Book Publishing and Corporate Communications* (2nd ed.). Berkeley, CA: University of California.

Garner, B. A. (2003). *Garner's Modern American Usage* (2nd ed.). New York: Oxford University Press.

Merriam-Webster's Collegiate Dictionary (11th ed.). (2007). Springfield, MA: Merriam-Webster.

Microsoft Corporation Editorial Style Board. (2004). *Microsoft Manual of Style for Technical Publications* (3rd ed.). Redmond, WA: Microsoft Press.

Popham, W. J. (2010). Classroom Assessment: What Teachers Need to Know (6th ed.).

Upper Saddle River, NJ: Pearson. Russell, M. K., and Airasian, P. (2011).

Classroom Assessment (7th ed.). New York: McGraw-Hill.

Words into Type (3rd ed.). (1974). Upper Saddle River, NJ: Prentice-Hall.

⁴ Hume, The Anatomy of Web Fonts

Appendix 2-D

Item Review Checklist

Item Review Checklist

Tier 1 – Sufficiency/Appropriateness of the Phenomenon to Assess the Performance Expectation

The elements in this tier are critical. If any of the following conditions are unmet, the item or cluster cannot move forward.

- □ Is the phenomenon based on a specific real-world scenario and focused enough to get the student to investigate what the Performance Expectation (PE) intends for them to investigate across **all three dimensions** (i.e., the students' application of the Practice in the context of the Disciplinary Core Idea [DCI] and Crosscutting Concepts [CCC] as intended by the PE is sufficient to make sense of the phenomena)?
- □ Is there an appropriate science-related activity that is puzzling and/or intriguing for students to engage in? Is the scenario focused on real-world observations that students can connect with or have direct experience with?
- \Box Is the context and complexity of the phenomenon grade-appropriate?
- □ Cluster Task Statement: Does the "call to action" reflect the end goal of the interactions to be answered? Does the statement make sense? Is this an engaging and reasonable outcome to work towards?
- Is the phenomenon presented in way(s) that all students can access and comprehend it based on information provided (including text, graphics, data, images, animations, etc.)?
 Is the phenomenon free of cultural bias, insensitivity or depreciation of unsafe situations?

Tier 2 – Review of Specific Elements by Component

<u>Stimulus</u>

Reading Load/Readability/Style

- □ Is the reading load appropriate for the grade (i.e., the amount of text minimized to reduce cognitive load)?
- \Box Is the language and vocabulary appropriate for the grade?
- □ Non-specific vocabulary should be one grade level lower than the tested grade.
- □ Science vocabulary should be part of the "Science Vocabulary Students Are Expected to Know" in the item specifications.
- □ Is all of the information in the stimulus necessary for the student to complete the item interactions?
- □ Is language consistent throughout the cluster (i.e., does not switch between steam and vapor)?

□ Is everything in the active voice (i.e., avoids unnecessary and unclear passive construction)?

Measurement/Units

- □ Are the data in SI units? Check style guide for exceptions.
- □ Are units of measurement introduced or defined before they are used in graphs/tables?
- \Box Are the dependent/independent variables on the correct axes or in the correct columns?
- □ Are the graphs/tables/pictures free of extraneous information and appropriate for the grade level?
- □ Is there information included in graphs/pictures/tables that is not necessary and can be removed?
- □ Do the graphs/tables/pictures depend on color? Is there another way to represent the difference in the data other than by color (e.g., using patterns)?

Data Source and Scientific Reference

- □ Is content both accurate and appropriate in its context?
- □ Are the data sources appropriate for the subject/grade and taken from reliable academic sources?
- □ Does the item use the most up-to-date explanation?

Formatting

- □ Is everything presented within the browser dimensions (1024x768) without horizontal scrolling?
- \Box Are the tables/graphs/etc. laid out in a way that is easy to read?
- □ Are details and text in animations easy to see? Are labels in diagrams easy to read?
- □ Is the average file size appropriate for test delivery (approximately 100KB, 250KB maximum)?

Item

Interaction and Alignment to Specifications

- □ Does the item make sense if you are responding to the interactions as if you are the student in the intended grade-level?
- □ Does the interaction require the student to demonstrate the science practice and/or content that the PE is assessing them on?
- □ Are the interactions grade level/developmentally appropriate and do they follow a logical progression? Do the interactions use appropriate scaffolding to guide students in making sense of the phenomena?
- \Box Do the interactions align with the task demands?

- □ Do the interactions avoid redundancy? Do the student interactions follow a coherent progression?
- □ Do the student interactions follow a coherent progression? Does the order of the interactions allow students to make sense of the phenomenon or problem?
- \Box Is the item stem worded in a way that makes the intent of the interaction clear to the student?
- \Box Is it clear to the student what they will be scored on in the interaction?
- □ Is the language (e.g., words, phrases) consistent throughout the stimulus and items?

Grade Appropriate

- Is the content within the item accurate and grade appropriate?
- Are the correct units used? Are the units grade appropriate? Where necessary, are the abbreviations of the units introduced?
- Is the number of item parts/scoring assertions appropriate for the grade level?
- Is the mathematics level appropriate for the grade being tested?

Formatting

- Is everything presented within the browser frame without horizontal scrolling?
- Are the tables/graphs/etc. easy to read? Are the images created in an appropriate color palette per the Style Guide?
- Are details and text in animations easy to see?

Tier 3 – Review of the Scoring and Assertion(s)

Scoring Accuracy

- □ Do the interactions/task provide clear guidance on how student responses will be scored/interpreted?
- □ Are scores assigned appropriately as correct or incorrect?
- \Box Are the dependencies logical?
- □ Are any of the scoring assertions exclusive (i.e., the student can get only one assertion correct and not another at any given time)?
- \Box Is the correct answer clear and distinct from the distractors?
- □ Does the scoring result in an appropriate distribution of points?

Scoring Assertions

- □ Is the appropriate wording used for each scoring assertion (e.g., <What the student did as a response> provides evidence of an understanding of/ability to <inference about student's ability relative to the PE being measured>)?
- \Box Does the inference follow from the data?
- □ Are the assertions specific to the individual interactions (i.e., does not just repeat the PE)?
- \Box Are the scoring assertions in the same order as the interactions?
- Does the wording of the scoring assertion make it very clear which interaction and action it refers to?

Strategies for Editing Text to Produce Plain Language

- Reduce excessive length
- Use common words
- Avoid ambiguous words
- Limit irregularly spelled words
- Avoid inconsistent naming and graphic conventions
- Avoid multiple terms for the same concept
- Limit the use of embedded clauses and phrases
- Avoid the passive voice

Appendix 2-E

Content Advisory Committee Participant Details

<u>Content Advisory Committee Participant Details</u>

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
Connecticut	February '17	Cromwell, CT	41	Gender: 78% Female, 22% Male	45	31
	May '17	New Britain, CT	42	Gender: 74% Female, 26% Male	40	38
	October '17	New Britain, CT	41	Gender: 80% Female, 20% Male	75	64
	November '17	New Britain, CT	35	Gender: 83% Female, 17% Male	41	32
	January/ February '18	New Britain, CT	33	Gender: 82% Female, 18% Male	42	25
	October '18	New Britain, CT	45	Gender: 84% Female, 16% Male	84	54
	November '18	New Britain, CT	49	Gender: 86% Female, 14% Male	235	200
	December '18	New Britain, CT	32	Gender: 81% Female, 19% Male	56	55
	January '19	New Britain, CT	44	Gender: 82% Female, 18% Male	65	59
	September '19	Rocky Hill, CT	50	Gender: 82% Female, 18% Male	60	57
	November '19	Cromwell, CT	44	Gender: 80% Female, 20% Male Ethnicity: 5% Hispanic or Latino, 93% White or Caucasian, 2% Preferred Not to Answer Region: 14% Rural, 59% Suburban, 16% Urban, 11% Not Applicable Teaching Experience: 2% None, 9% 1 to 5 years, 9% 6 to 10 years, 30% 11 to 15 years, 25% 16 to 20 years, 25% More than 20 years	171	153
	January '20	Cromwell, CT	57	Gender: 75% Female, 25% Male Ethnicity: 5% Black or African American, 2% Franco- American, 5% Hispanic or Latino, 88% White or Caucasian Region: 14% Rural, 63% Suburban, 19% Urban, 4% Not Applicable	190	161

Table E-1. Content Advisory Committee Participants, Science

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Teaching Experience: 12% 1 to 5 years, 14% 6 to 10 years, 25% 11 to 15 years, 21% 16 to 20 years, 28% More than 20 years		
	July '20ª	Virtual	23	Gender: 83% Female, 17% Male Ethnicity: 4% Black or African American, 91% White or Caucasian, 4% Prefer Not to Answer	48	44
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	26	26
	September '21	Virtual	27	Gender: 74% Female, 26% Male Ethnicity: 4% Black or African American, 96% White or Caucasian Region: 41% Suburban, 11% Urban, 7% Not Applicable, 41% Did Not Respond Teaching Experience: 7% 1 to 5 years, 15% 6 to 10 years, 15% 11 to 15 years, 15% 16 to 20 years, 48% More than 20 years	149	120
	June/ August '22ª	Virtual	26	 State: 8% Connecticut, 11% Idaho, 4% North Dakota, 4% Oregon, 19% Rhode Island, 27% Utah, 8% West Virginia, 19% Wyoming Gender: 77% Female, 23% Male Ethnicity: 15% Hispanic or Latino, 81% White or Caucasian, 4% Race/Ethnicity Not Listed Region: 19% Rural, 23% Urban, 31% Suburban, 27% Did Not Respond Teaching Experience: 15% 11 to 15 years, 23% 6 to 10 years, 35% 16 to 20 years, 27% More than 20 years 	65	63
	July '22	Virtual	21	Gender: 76% Female, 24% Male Ethnicity: 10% Hispanic or Latino, 86% White or Caucasian, 4% Multiracial or Biracial Region: 76% Suburban, 10% Urban, 14% Did Not Respond Teaching Experience: 19% 6 to 10 years, 4% 11 to 15 years, 10% 16 to 20 years, 67% More than 20 years	62	56

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
Hawaii	July '17	Honolulu, HI	22	Gender: 64% Female, 36% Male Ethnicity: 5% Black or African American, 5% Chinese and White, 9% Filipino, 14% Hawaiian, 9% Hispanic or Latino, 14% Japanese, 41% White or Caucasian, 5% Did Not Respond Teaching Experience: 64% General Education, 5% General Education with SPED Certification, 5% SPED Teacher, 23% Other, 5% Did Not Respond	25	b
	September '17	Honolulu, HI	20	Gender: 75% Female, 25% Male Ethnicity: 5% Black or African American, 10% Filipino, 10% Hispanic or Latino, 15% Japanese, 50% White or Caucasian, 10% Did Not Respond Teaching Experience: 65% General Education, 15% General Education with SPED Certification, 20% Other	65	b
	October '18	Honolulu, HI	28	Gender: 83% Female, 17% Male Ethnicity: 31% Asian, 7% Asian Pacific Islander, 3% Hawaiian, 10% Hispanic or Latino, 28% White or Caucasian, 10% Two or More, 10% Did Not Respond Teaching Experience: 83% General Education, 24% Other	85	79
	February/ March '19	Honolulu, HI	21	Gender: 80% Female, 20% Male Ethnicity: 50% Asian, 35% White or Caucasian, 15% Two or More Teaching Experience: 65% General Education, 5% General Education with SPED Certification, 5% SPED Teacher, 25% Other	44	44
	June/ July '20	Virtual	17	Gender: 18% Female, 12% Male, 70% Did Not Respond Ethnicity: 6% Asian or Pacific Islander, 6% Multiracial or Biracial, 18% White or Caucasian, 70% Did Not Respond Region: 12% Rural, 12% Suburban, 76% Did Not Respond Teaching Experience: 6% 6 to 10 years, 12% 11 to 15 years, 12% More than 20 years, 70% Did Not Respond	344	324
	July '20ª	Virtual	28	State: 14% Connecticut, 4% Hawaii, 14% Idaho, 14% Montana, 7% Oregon, 4% Rhode Island, 4% Utah, 7% Vermont, 11% West Virginia, 7% Wyoming, 14% Did Not Respond Gender: 86% Female, 14% Male	90	90

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Ethnicity: 4% Black or African American, 46% White or Caucasian, 50% Did Not Respond Region: 7% Rural, 14% Suburban, 14% Urban, 64% Did Not Respond Teaching Experience: 3% 6 to 10 years, 11% 11 to 15 years, 14% 16 to 20 years, 18% More than 20 years, 54% Did Not Respond		
	June/ August '22ª	Virtual	25	State: 12% Connecticut, 16% Idaho, 16% North Dakota, 16% Oregon, 20% Rhode Island, 12% Utah, 4% West Virginia, 4% Wyoming Gender: 88% Female, 12% Male Ethnicity: 8% Hispanic or Latino, 4% Multiracial or Biracial, 80% White or Caucasian, 8% Did Not Respond Region: 20% Rural, 16% Suburban, 12% Urban, 52% Did Not Respond Teaching Experience: 4% 1 to 5 Years, 32% 6 to 10 Years, 20% 11 to 15 Years, 20% 16 to 20 Years, 16% More than 20 Years, 8% Did Not Respond	46	46
	July '22	Honolulu, HI	9	Gender: 67% Female, 22% Male, 11% Non-Binary Ethnicity: 44% Asian/Pacific Islander, 11% Hispanic or Latino, 11% Multiracial or Biracial, 22% White or Caucasian, 11% Did Not Respond Region: 11% Hilo, 11% Maui, 78% Oahu Teaching Experience: 11% 1 to 5 years, 11% 6 to 10 years, 11% 11 to 15 years, 22% 16 to 20 years, 44% More than 20 years	45	44
	July '22	Honolulu, HI	9	Gender: 67% Female, 22% Male, 11% Non-Binary Ethnicity: 44% Asian/Pacific Islander, 11% Hispanic or Latino, 11% Multiracial or Biracial, 22% White or Caucasian, 11% Did Not Respond Region: 11% Hilo, 11% Maui, 78% Oahu Teaching Experience: 11% 1 to 5 years, 11% 6 to 10 years, 11% 11 to 15 years, 22% 16 to 20 years, 44% More than 20 years	306	306
ICCR	March '18	Virtual	38	State: 45% Connecticut, 5% Hawaii, 3% Indiana, 3% Maryland, 8% Oregon, 8% Utah, 26% West Virginia, 3% Wyoming Gender: 74% Female, 26% Male	152	b

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
	July '20ª	Virtual	6	 State: 17% Connecticut, 17% Idaho, 17% Oregon, 17% Rhode Island, 33% Did Not Respond Gender: 83% Female, 17% Male Ethnicity: 33% White or Caucasian, 67% Did Not Respond Region: 17% Suburban, 83% Did Not Respond Teaching Experience: 33% 16 to 20 years, 67% Did Not Respond 	57	56
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	141	141
	July '21	Virtual	45	 State: 33% Connecticut, 9% Hawaii, 4% Idaho, 2% Montana, 7% North Dakota, 4% Oregon, 18% South Dakota, 2% Vermont, 4% West Virginia, 13% Wyoming Gender: 80% Female, 18% Male, 2% Did Not Respond Ethnicity: 4% Asian or Pacific Islander, 2% Black or African American, 4% Hispanic or Latino, 87% White or Caucasian, 2% Did Not Respond Region: 36% Rural, 24% Suburban, 20% Urban, 20% Did Not Respond Teaching Experience: 2% None, 2% Less than 1 year, 11% 1 to 5 years, 33% 6 to 10 years, 16% 11 to 15 years, 9% 16 to 20 years, 24% More than 20 years, 2% Did Not Respond 	163	158
	June/ August '22ª	Virtual	12	State: 17% Connecticut, 17% Idaho, 58% North Dakota, 8% Oregon Gender: 92% Female, 8% Male Ethnicity: 67% White or Caucasian, 33% Did Not Respond Region: 33% Suburban, 33% Urban, 33% Did Not Respond Teaching Experience: 17% 6 to 10 Years, 42% 11 to 15 Years, 8% More than 20 Years, 33% Did Not Respond	121	118
Idaho	December '18	Boise, ID	21	Not Collected	241	230
	October '19	Boise, ID	18	Gender: 83% Female, 11% Male, 6% Did Not Respond Ethnicity: 100% White or Caucasian	231	211

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Region: 50% Rural, 17% Suburban, 22% Urban, 11% Not Applicable Teaching Experience: 11% 1 to 5 years, 22% 6 to 10 years, 17% 11 to 15 years, 11% 16 to 20 years, 28% 21 or more years, 11% Did Not Respond		
	July '20ª	Virtual	2	State: 100% Hawaii Gender: 100% Female	12	12
	October '20	Virtual	с	Not Collected	14	14
	July '21ª	Virtual	8	Gender: 88% Female, 13% Male Ethnicity: 100% White or Caucasian Region: 25% Rural, 25% Suburban, 50% Did Not Respond Teaching Experience: 38% 6 to 10 years, 38% 11 to 15 years, 13% 16 to 20 years, 13% More than 20 years	b	b
	November '21	Virtual	11	Gender: 91% Female, 9% Male Ethnicity: 73% White or Caucasian, 17% Did Not Respond Region: 18% Rural, 18% Suburban, 64% Did Not Respond Teaching Experience: 9% 1 to 5 years, 46% 6 to 10 years, 9% 11 to 15 years, 9% More than 20 years, 27% Did Not Respond	317	286
	June/ August '22ª	Virtual	14	State: 29% Connecticut, 14% Oregon, 7% Rhode Island, 7% North Dakota, 21% Utah, 7% West Virginia, 14% Wyoming Gender: 71% Female, 29% Male Ethnicity: 7% Hispanic or Latino, 93% White or Caucasian, Region: 36% Rural, 21% Suburban, 14% Urban, 29% Did Not Respond Teaching Experience: 29% 6 to 10 Years, 21% 11 to 15 Years, 29% 16 to 20 Years, 21% More than 20 Years	12	12
	July '22	Virtual	5	Gender: 100% Female Ethnicity: 80% White or Caucasian, 20% Did Not Respond Region: 20% Rural, 40% Suburban, 40% Did Not Respond Teaching Experience: 40% 1 to 5 years, 40% 6 to 10 years, 20% 11 to 15 years	244	204
Montana	January '20	Helena, MT	15	Not Collected	149	139
	July '20ª	Virtual	4	State: 25% Hawaii, 25% Idaho, 25% Oregon, 25% Rhode Island Gender: 75% Female, 25% Male	9	9

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Ethnicity : 50% White or Caucasian, 50% Did Not Respond Region: 50% Urban, 50% Did Not Respond Teaching Experience: 50% More than 20 years, 50% Did Not Respond		
	October '20	Virtual	8	Gender: 13% Female, 88% Did Not Respond Ethnicity:13% White or Caucasian, 88% Did Not Respond Region: 13% Rural, 88% Did Not Respond Teaching Experience: 13% 16 to 20 years, 88% Did Not Respond	156	140
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	36	36
	October '21	Virtual	6	Gender: 83% Female, 17% Did Not Respond Ethnicity: 17% Hispanic or Latino, 67% White or Caucasian, 17% Did Not Respond Region: 67% Rural, 33% Did Not Respond Teaching Experience: 33% 6 to 10 years, 33% 11 to 15 years, 17% More than 20 years, 17% Did Not Respond	41	39
	June/ August '22ª	Virtual	9	State: 22% Connecticut, 22% Idaho, 11% Oregon, 11%Rhode Island, 11% West Virginia, 22% WyomingGender: 78% Female, 22% MaleEthnicity: 100% White or CaucasianRegion: 33% Rural, 22% Suburban, 11% Urban, 33% DidNot RespondTeaching Experience: 22% 6 to 10 Years, 33% 11 to 15Years, 11% 16 to 20 Years, 33% More than 20 Years	13	13
Multi-State Science Assessment	January '18	Providence, RI	42	State: 90% Rhode Island, 10% Vermont Teaching Experience: 69% General Education, 2% Bilingual Education, 14% Science Coordinator, 14% Other	73	58
(Rhode	March '18	Providence, RI	34	State: 25% Rhode Island, 75% Vermont	107	90
Island and Vermont)	January '19	Concord, NH	21	Gender: 74% Female, 26% Male Teaching Experience: 69% General Education, 3% Special Education, 29% Other, 6% Not Applicable	116	97

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
	November '19	Fairlee, VT	17	State: 29% Rhode Island, 6% Vermont, 65% Did Not Respond Gender: 23% Female, 12% Male, 65% Did Not Respond Ethnicity: 35% White or Caucasian, 65% Did Not Respond Region: 6% Rural, 17% Suburban, 77% Did Not Respond Teaching Experience: 6% 11 to 15 years, 17% 16 to 20 years, 12% More than 20 years, 65% Did Not Respond	136	118
	July '20ª	Virtual	8	State: 13% Connecticut, 13% Hawaii, 13% Montana, 13% Oregon, 25% Oregon, 25% Did Not Respond Gender: 88% Female, 13% Male Ethnicity: 38% White or Caucasian, 63% Did Not Respond Region: 13% Suburban, 88% Did Not Respond Teaching Experience: 13% 6 to 10 years, 13% 11 to 15 years, 13% More than 20 years, 63% Did Not Respond	27	27
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	32	31
	August '21	Virtual	11	State: 45% Rhode Island, 55% Vermont Gender: 73% Female, 27% Male Ethnicity: 100% White or Caucasian Region: 36% Rural, 18% Suburban, 9% Urban, 36% Did Not Respond Teaching Experience: 27% 6 to 10 years, 18% 11 to 15 years, 27% 16 to 20 years, 27% More than 20 years	93	91
Oregon	August '17	Salem, OR	10	Gender: 90% Female, 10% Male Region: 50% Rural, 50% Urban Teaching Experience: 100% General Education, 10% Bilingual Education, 10% Special Education, 20% Administration	235	142
	August '18	Salem, OR	20	Gender: 80% Female, 20% Male Ethnicity: 95% White or Caucasian, 5% Other Region: 44% Rural, 56% Urban	257	200

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Teaching Experience: 65% Bilingual Education, 65% Special Education, 55% Other		
	October '18	Salem, OR	11	Gender: 100% Female Ethnicity: 91% White or Caucasian, 9% Other Region: 45% Rural, 55% Urban Teaching Experience: 18% General Education, 91% Bilingual Education, 45% Special Education, 55% Other	60	30
	December '18	Virtual	16	Gender: 63% Female, 38% Male Ethnicity: 6% Asian, 94% White or Caucasian Region: 50% Suburban, 50% Urban Teaching Experience: 38% General Education, 63% Bilingual Education, 25% Special Education	62	48
	October '19	Salem, OR	17	Gender: 76% Female, 24% Male Ethnicity: 6% Asian, 88% White or Caucasian, 6% Other Region: 29% Rural, 71% Urban Teaching Experience: 82% General Education, 29% Bilingual Education, 18% Special Education	255	221
	July '20ª	Virtual	9	State: 22% Idaho, 11% Vermont, 22% West Virginia, 11% Wyoming, 33% Did Not Respond Gender: 78% Female, 22% Male Ethnicity: 44% White or Caucasian, 56% Did Not Respond Region: 11% Rural, 11% Suburban, 78% Did Not Respond Teaching Experience: 11% 11 to 15 years, 11% 16 to 20 years, 22% More than 20 years, 56% Did Not Respond	22	20
	August '20	Virtual	21	Gender: 71% Female, 29% Male Ethnicity: 90% White or Caucasian, 5% Hispanic or Latino, 5% Native American Region: 5% Urban, 43% Suburban, 52% Rural Teaching Experience: 86% General Education, 81% Bilingual Education, 81% Special Education, 14% Administration, 5% Other	159	134
	August '21	Virtual	14	Gender: 86% Female, 14% Male Ethnicity: 86% White or Caucasian, 7% Asian and/or Pacific Islander, 7% Hispanic or Latino Region: 14% Urban, 72% Suburban, 14% Rural Teaching Experience: 64% General Education, 7% Bilingual Education, 7% Special Education, 22% Other	375	308

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
	July '22	Virtual	14	Gender: 64% Female. 36% Male Ethnicity: 100% White or Caucasian Region: 36% Rural, 28% Suburban, 36% Urban Teaching Experience: 7% 1 to 5 years, 36% 6 to 10 years, 21% 11 to 15 years, 7% 16 to 20 years, 29% More than 20 years	66	58
Rhode Island	October '22	Virtual	20	Gender: 85% Female, 15% Male Ethnicity: 10% Black or African American, 5% Multiracial or Biracial, 85% White or Caucasian Region: 10% Rural, 25% Suburban, 30% Urban, 35% Did Not Respond Teaching Experience: 20% 1 to 5 years, 15% 6 to 10 years, 10% 11 to 15 years, 25% 16 to 20 years, 30% More than 20 years	115	93
South Dakota	October '19	Pierre, SD	26	Gender: 81% Female, 19% Male Ethnicity: 4% American Indian or Alaska Native, 4% Asian, 92% White or Caucasian Region: 65% Rural, 15% Suburban, 15% Urban, 4% Not Applicable Teaching Experience: 12% 1 to 5 years, 12% 6 to 10 years, 19% 11 to 15 years, 19% 16 to 20 years, 38% More than 20 years	235	222
Utah	July '17	Park City, UT	18	Gender: 74% Female, 26% Male Ethnicity: 4% Native American, 91% White or Caucasian, 4% Other Teaching Experience: 100% General Education, 4% Special Education, 4% Other	55	51
	December '17	Salt Lake City, UT	36	Gender: 84% Female, 16% Male Ethnicity: 3% American Indian/Alaska Native and White, 94% White or Caucasian, 3% Other Teaching Experience: 87% General Education, 10% General Education and Other, 3% General Education and ESOL	64	62
	October '19	Provo, UT	16	Gender: 25% Female, 75% Did Not Respond Ethnicity: 25% White or Caucasian, 75% Did Not Respond Region: 25% Suburban, 75% Did Not Respond	91	44

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Teaching Experience: 6% 6 to 10 years, 6% 16 to 20 years, 13% More than 20 years, 75% Did Not Respond		
	July '20ª	Virtual	17	 State: 6% Connecticut, 12% Hawaii, 18% Idaho, 12% Montana, 12% Oregon, 12% Rhode Island, 6% Vermont, 6% West Virginia, 12% Wyoming, 6% Did Not Respond Gender: 82% Female, 18% Male Ethnicity: 47% White or Caucasian, 6% Other, 47% Did Not Respond Region: 6% Rural, 12% Suburban, 6% Urban, 76% Did Not Respond Teaching Experience: 12% 6 to 10 years, 6% 11 to 15, 18% 16 to 20 years, 18% More than 20 years, 47% Did Not Respond 	44	44
	July '20	Virtual	16	Gender: 31% Female, 6% Male, 63% Did Not Respond Ethnicity: 6% Asian or Pacific Islander, 19% Hispanic or Latino, 13% White or Caucasian, 63% Did Not Respond Region: 19% Urban, 6% Suburban, 75% Did Not Respond Teaching Experience: 6% 6 to 10 years, 13% 11 to 15 years, 13% 16 to 20 years, 6% More than 20 years, 63% Did Not Respond	82	76
	December '20	Virtual	6	Gender: 50% Female, 50% Did Not Respond Ethnicity: 17% Hispanic or Latino, 33% White or Caucasian, 50% Did Not Respond Region: 17% Suburban, 83% Did Not Respond Teaching Experience: 17% 1 to 5 years, 33% 16 to 20 years, 50% Did Not Respond	14	12
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	55	53
	August '21	Virtual	14	Gender: 86% Female, 14% Male Ethnicity: 7% Asian or Pacific Islander, 21% Hispanic or Latino, 71% White or Caucasian	62	62

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Region: 14% Rural, 36% Suburban, 43% Urban, 7% Did Not Respond Teaching Experience: 7% 1 to 5 years, 21% 6 to 10 years, 21% 11 to 15 years, 29% 16 to 20 years, 21% More than 20 years		
	September '22	Salt Lake City, UT	28	Gender: 81% Female, 19% Male Ethnicity: 2% American Indian or Alaska Native, 1% Asian, 2% Hispanic or Latino, 1% Mediterranean, 80% White or Caucasian Region: 26% Rural, 52% Suburban, 16% Urban, 7% Not Applicable Teaching Experience: 29% 1 to 5 years, 39% 6 to 10 years, 3% 11 to 15 years, 7% 16 to 20 years, 7% More than 20 years, 16% Not Applicable	111	99
West Virginia	January '17	Charleston, WV	28 ^d	Not Collected	39	b
Ū	October '18	Charleston, WV	10	Gender: 89% Female, 11% Male Ethnicity: 11% Black or African American, 89% White or Caucasian Region: 100% Rural Teaching Experience: 100% General Education	191	b
	January '19	Charleston, WV	9	Gender: 89% Female, 11% Male Ethnicity: 11% Black or African American, 89% White or Caucasian Region: 100% Rural	71	67
	July '19	Charleston, WV	12	Gender: 87% Female, 13% Male Ethnicity: 4% Asian, 4% Black or African American, 87% White or Caucasian, 4% Not Applicable Region: 70% Rural, 30% Urban, 4% Not Applicable Teaching Experience: 72% General Education, 4% Special Education, 13% Other, 13% Not Applicable	50	b
	July '20ª	Virtual	8	State: 13% Connecticut, 38% Idaho, 13% Oregon, 13% Wyoming, 25% Did Not Respond Gender: 100% Female Ethnicity: 38% White or Caucasian, 63% Did Not Respond Region: 13% Suburban, 13% Rural, 75% Did Not Respond	102	102

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Teaching Experience: 13% 6 to 10 years, 25% More than 20 years, 63% Did Not Respond		
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	16	16
	June/ August '22ª	Virtual	8	State: 25% Connecticut, 13% Hawaii, 25% Idaho, 13% Rhode Island, 25%Wyoming Gender: 88% Female, 12% Male Ethnicity: 12% Asian or Pacific Islander, 75% White or Caucasian, 12% Did Not Respond Region: 25% Suburban, 12% Urban, 63% Did Not Respond Teaching Experience: 12% 6 to 10 years, 38% 11 to 15 years, 25% 16 to 20 years, 12% More than 20 years, 12% Did Not Respond	13	13
Wyoming	December '17	Chevenne, WY	18	Not Collected	32	30
	October '18	Cheyenne, WY	19	Gender: 79% Female, 21% Male Teaching Experience: 5% 3 to 5 years, 21% 6 to 10 years, 42% 11 to 20 years, 32% 21 or more years	39	36
	November '19	Cheyenne, WY	22	Gender: 91% Female, 9% Male Teaching Experience: 9% 3 to 5 years, 23% 6 to 10 years, 18% 11 to 20 years, 50% 21 or more years	44	43
	July '20ª	Virtual	13	 State: 8% Connecticut, 15% Hawaii, 8% Montana, 15% Oregon, 8% Rhode Island, 23% West Virginia, 23% Did Not Respond Gender: 77% Female, 23% Male Ethnicity: 8% Asian or Pacific Islander, 23% White or Caucasian, 8% Other, 61% Did Not Respond Region: 8% Suburban, 15% Urban, 77% Did Not Respond Teaching Experience: 15% 6 to 10 years, 23% 11 to 15 years, 15% 16 to 20 years, 46% Did Not Respond 	37	37
	August '20	Virtual	14	Gender: 29% Female, 7% Male, 64% Did Not Respond Ethnicity: 36% White or Caucasian, 64% Did Not Respond Region: 22% Rural, 78% Did Not Respond	37	36

State/Item Bank	Date	Location	Number of Committee Members	CAC Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Approved by Committees
				Teaching Experience: 7% 11 to 15 years, 7% 16 to 20 years, 22% More than 20 years, 64% Did Not Respond		
	June/ July '21	Virtual	14	Gender: 43% Female, 7% Male, 50% Did Not Respond Ethnicity: 50% White or Caucasian, 50% Did Not Respond Region: 14% Rural,7% Suburban, 7% Urban, 71% Did Not Respond Teaching Experience: 14% 11 to 15 years, 36% More than 20 years, 50% Did Not Respond	39	39
	July '21ª	Virtual	68	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	39	38
	June/ August '22ª	Virtual	9	State: 22% Connecticut, 22% Idaho, 33% Utah, 22% West Virginia Gender: 78% Female, 22% Male Ethnicity: 11% Hispanic or Latino, 78% White or Caucasian, 11% Race/Ethnicity Not Listed Region: 33% Rural, 11% Suburban, 11% Urban, 44% Did Not Respond Teaching Experience: 44% 6 to 10 years, 11% 11 to 15 years, 44% More than 20 years	37	37

^aItems were reviewed in a combined Content Advisory Committee Meeting that included ICCR and MOU state-owned items. Items reviewed in the combined meetings are displayed by their respective state or bank of ownership.

^bAs of the time of writing this report, the number of science items reviewed and/or approved by Content Advisory Committees is not currently available.

^cThe number of Committee Members is not available at the time of writing this report.

^dThe number of Committee Members includes the total members across ELA, math, and science committees. The specific number of science committee members is currently unavailable.

Appendix 2-F

Fairness Committee Participant Details

Fairness Committee Participant Details

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
Connecticut	February '17	Cromwell, CT	6	Gender: 83% Female, 17% Male	45	1
	December '17	New Britain, CT	9	Gender: 78% Female, 22% Male	75	а
	December '17	Cromwell, CT	10	Gender: 70% Female, 30% Male	41	а
	February '18	New Britain, CT	3	Gender: 67% Female, 33% Male	42	1
	November '18	New Britain, CT	11	Gender: 91% Female, 9% Male	319	38
	December '18	New Britain, CT	10	Gender: 80% Female, 20% Male	56	1
	January '19	New Britain, CT	9	Gender: 78% Female, 22% Male	65	1
	September '19	Cromwell, CT	9	Gender: 89% Female, 11% Male	48	0
	November '19	Cromwell, CT	10	Gender: 80% Female, 20% Male Ethnicity: 100% White or Caucasian Region: 10% Rural, 70% Suburban, 20% Urban Teaching Experience: 10% 6 to 10 years, 20% 11 to 15 years, 10% 16 to 20 years, 60% More than 20 years	52	1
	July '20 ^b	Virtual	8	Gender: 88% Female, 13% Male Ethnicity: 13% Hispanic or Latino, 75% White or Caucasian, 13% Prefer Not to Say	43	0
	July '21 ^b	Virtual	6	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	20	0
	September '21	Virtual	7	Gender: 43% Female, 57% Male	111	23

Table F-1. Fairness Committee Participants, Science

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Ethnicity: 100% White or Caucasian Region: 29% Suburban, 29% Urban, 43% Did Not Respond Teaching Experience: 14% 6 to 10 years, 29% 11 to 15 years, 14% 16 to 20 years, 43% More than 20 years		
	June/ August '22 ^b	Virtual	3	State: 33% Connecticut, 33% Oregon, 33% Wyoming Gender: 66% Female, 33% Male Ethnicity: 66% White or Caucasian, 33% Did Not Respond Region: 66% Suburban, 33% Did Not Respond Teaching Experience: 66% More than 20 years, 33% Did Not Respond	65	2
	August '22	Virtual	19	Gender: 79% Female, 21% Male Ethnicity: 5% Hispanic or Latino, 90% White or Caucasian, 5% Multiracial or Biracial Region: 63% Suburban, 5% Urban, 32% Not Applicable Teaching Experience: 11% 6 to 10 years, 11% 11 to 15 years, 21% 16 to 20 years, 57% More than 20 years	154	27
Hawaii	July '17	Honolulu, HI	22	Gender: 64% Female, 36% Male Ethnicity: 5% Black or African American, 5% Chinese and White, 9% Filipino, 14% Hawaiian, 9% Hispanic or Latino, 14% Japanese, 41% White or Caucasian, 5% Did Not Respond Teaching Experience: 64% General Education, 5% General Education with SPED Certification, 5% SPED Teacher, 23% Other, 5% Did Not Respond	25	2
	September '17	Honolulu, HI	20	Gender: 75% Female, 25% Male Ethnicity: 5% Black or African American, 10% Filipino, 10% Hispanic or Latino, 15% Japanese, 50% White or Caucasian, 10% Did Not Respond Teaching Experience: 65% General Education, 15% General Education with SPED Certification, 20% Other	65	13
	October '18	Honolulu, HI	29	Gender: 79% Female, 21% Male Ethnicity: 7% Asian, 3% Hawaiian, 7% Asian Pacific Islander, 7% Chinese, 3% Filipino, 10% Hispanic or Latino, 10% Japanese, 28% White or Caucasian, 14% Multi- Racial/Ethnic, 10% Not Applicable	85	6
	February/ March '19	Honolulu, HI	21	Gender: 80% Female, 20% Male Ethnicity: 50% Asian, 35% White or Caucasian, 15% Two or More	44	0

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Teaching Experience: 65% General Education, 5% General Education with SPED Certification, 5% SPED Teacher, 25% Other		
	June/ July '20	Virtual	17	Gender: 18% Female, 12% Male, 70% Did Not Respond Ethnicity: 18% White or Caucasian, 6% Asian or Pacific Islander, 6% Multiracial or Biracial, 70% Did Not Respond Region: 12% Rural, 12% Suburban, 76% Did Not Respond Teaching Experience: 6% 6 to 10 years, 12% 11 to 15 years, 12% More than 20 years, 70% Did Not Respond	344	324
	July '20 ^b	Virtual	4	State: 25% Connecticut, 50% Rhode Island, 25% Utah Gender: 100% Female Ethnicity: 25% White or Caucasian, 25% Hispanic or Latino, 50% Did Not Respond Region: 25% Urban, 75% Did Not Respond Teaching Experience: 25% 6 to 10 years, 25% 16 to 20 years, 50% Did Not Respond	55	8
	June/ August '22 ^b	Virtual	6	State: 33% Oregon, 17% Rhode Island, 33% Utah, 17% West Virginia Gender: 67% Female, 33% Male Ethnicity: 67% White or Caucasian, 33% Multiracial or Biracial Region: 33% Rural, 33% Urban, 33% Did Not Respond Teaching Experience: 33% None, 33% 11 to 15 years, 33% More than 20 years	46	0
	July '22	Honolulu, HI	9	Gender: 67% Female, 22% Male, 11% Non-Binary Ethnicity: 44% Asian/Pacific Islander, 11% Hispanic or Latino, 11% Multiracial or Biracial, 22% White or Caucasian, 11% Did Not Respond Region: 11% Hilo, 11% Maui, 78% Oahu Teaching Experience: 11% 1 to 5 years, 11% 6 to 10 years, 11% 11 to 15 years, 22% 16 to 20 years, 44% More than 20 years	45	0
	July '22	Honolulu, HI	9	Gender: 67% Female, 22% Male, 11% Non-Binary Ethnicity: 44% Asian/Pacific Islander, 11% Hispanic or Latino, 11% Multiracial or Biracial, 22% White or Caucasian, 11% Did Not Respond Region: 11% Hilo, 11% Maui, 78% Oahu	306	0

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Teaching Experience: 11% 1 to 5 years, 11% 6 to 10 years, 11% 11 to 15 years, 22% 16 to 20 years, 44% More than 20 years		
ICCR	March '18	Virtual	13	State: 46% Connecticut, 8% Indiana, 15% Utah, 23% West Virginia, 8% Wyoming Gender: 85% Female, 15% Male	152	7
	July '20 ^b	Virtual	5	 State: 20% Connecticut, 40% Rhode Island, 20% Utah, 20% Vermont Gender: 100% Female Ethnicity: 60% White or Caucasian, 20% Hispanic or Latino, 20% Did Not Respond Region: 40% Rural, 20% Suburban, 20% Urban, 20% Did Not Respond Teaching Experience: 20% 6 to 10 years, 20% 11 to 15 years, 20% 16 to 20 years, 20% More than 20 years, 20% Did Not Respond 	57	0
	July '21 ^b	Virtual	15	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	157	1
	June/ August '22 ^b	Virtual	7	State: 71% Connecticut, 14% North Dakota, 14% Utah Gender: 100% Female Ethnicity: 71% White or Caucasian, 29% Did Not Respond Region: 29% Suburban, 71% Did Not Respond Teaching Experience: 14% 11 to 15 years, 29% 16 to 20 years, 29% More than 20 years, 29% Did Not Respond	121	3
Idaho	December '18	Boise, ID	15	Not Collected	111	1
	December '21	Boise, ID	21	Gender: 81% Female, 19% Male Ethnicity: 95% White or Caucasian, 5% Hispanic or Latino Region: 33% Rural, 19% Suburban, 5% Urban, 43% Did Not Respond Teaching Experience: 19% None, 5% Less than 1 year, 5% 1 to 5 years, 19% 6 to 10 years, 5% 11 to 15 years, 14% 16 to 20 years, 33% More than 20 years	179	0
	June/ August '22 ^b	I Virtual	4	State: 50% Connecticut, 25% Oregon, 25% Wvoming	12	0

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Gender: 100% Female Ethnicity: 75% White or Caucasian, 25% Did Not Respond Region: 25% Suburban, 75% Did Not Respond Teaching Experience: 25% 11 to 15 years, 25% 16 to 20 years, 25% More than 20 years, 25% Did Not Respond		
Montana	January '20	Helena MT	15	Not Collected	149	а
inoritaria	July '21 ^b	Virtual	3	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	41	0
	June/ August '22 ^b	Virtual	4	State: 50% Connecticut, 25% Oregon, 25% Wyoming Gender: 100% Female Ethnicity: 75% White or Caucasian, 25% Did Not Respond Region: 25% Suburban, 75% Did Not Respond Teaching Experience: 25% 11 to 15 years, 25% 16 to 20 years, 25% More than 20 years, 25% Did Not Respond	13	0
Multi-State Science Assessment (Rhode	January '18	Providence, RI	21	State: 100% Rhode Island Teaching Experience: 67% General Education, 14% Bilingual Education, 5% Special Education, 5% Science Coordinator, 10% Other	73	14
Ìsland and Vermont)	March '18	Providence, RI	11	State: 55% Rhode Island, 45% Vermont	100	24
Volitionty	January '19	Concord, NH	14	Gender: 63% Female, 23% Male Teaching Experience: 69% General Education, 3% Special Education, 11% Coach, 17% Other	116	18
	November '19	Fairlee, VT	17	 State: 29% Rhode Island, 6% Vermont, 65% Did Not Respond Gender: 23% Female, 12% Male, 65% Did Not Respond Ethnicity: 35% White or Caucasian, 65% Did Not Respond Region: 6% Rural, 17% Suburban, 77% Did Not Respond Teaching Experience: 6% 11 to 15 years, 17% 16 to 20 years, 12% More than 20 years, 65% Did Not Respond 	66	0
	July '20 ^b	Virtual	2	State: 50% Utah, 50% Vermont Gender: 100% Female Ethnicity: 50% Hispanic or Latino, 50% White or Caucasian	27	0

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Region: 50% Rural, 50% Did Not Respond Teaching Experience: 50% 6 to 10 years, 50% More than 20 years		
	July '21 ^b	Virtual	3	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	30	1
	August '21	Virtual	3	State: 100% Rhode Island Gender: 100% Female Ethnicity: 100% White or Caucasian Region: 33% Suburban, 67% Urban Teaching Experience: 33% 6 to 10 years, 67% More than 20 years	93	3
Oregon	September '17	Salem, OR	5	Gender: 100% Female Region: 80% Urban, 20% Suburban Teaching Experience: 40% General Education, 20% Bilingual Education, 20% Special Education, 60% Administration, 20% Other	235	114
	August '18	Salem, OR	39	Gender: 74% Female, 26% Male Ethnicity: 3% Asian, 8% Hispanic or Latino, 3% Native American, 82% White or Caucasian, 10% Other Region: 56% Urban, 44% Rural Teaching Experience: 15% General Education, 72% Bilingual Education, 33% Special Education, 33% Other	257	8
	October '18	Salem, OR	8	Gender: 100% Female Ethnicity: 80% White or Caucasian, 20% Other Region: 80% Urban, 20% Rural Teaching Experience: 88% Bilingual Education, 50% Special Education, 63% Other	60	12
	December '18	Virtual	11	Gender: 91% Female, 9% Male Ethnicity: 9% Hispanic or Latino, 91% White or Caucasian Region: 55% Urban, 45% Rural Teaching Experience: 27% General Education, 64% Bilingual Education, 18% Special Education, 9% Administration, 64% Other	62	14

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
	October '19	Salem, OR	9	Gender: 78% Female, 22% Male	246	23
				Ethnicity: 89% White or Caucasian, 11% Native American		
				Region: 44% Urban, 56% Rural		
				Teaching Experience: 89% General Education, 67%		
				Bilingual Education, 44% Special Education		
	January '20	Salem, OR	11	Gender: 55% Female, 45% Male	262	33
				Ethnicity: 100% White or Caucasian		
				Region: 45% Urban, 45% Suburban, 9% Rural		
				leaching Experience: 100% General Education, 90%		
	L L (Och			Billingual Education, 81% Special Education, 81% Other		
	July 20 ⁵	Virtual	2	State: 50% Connecticut, 50% Utan	22	3
				Gender: 100% Female		
				Ethnicity: 50% Hispanic of Latino, 50% Did Not Respond		
				Region: 100% Did Not Respond Teaching Experience: 50% 6 to 10 years - 50% Did Not		
				Peapend		
	August '20	Virtual	7	Gondor: 72% Female 14% Male 14% Nonhinary	86	7
	August 20	Viituai	'	Ethnicity: 14% Asian 43% African American 29% Hispanic	00	'
				or Latino 14% Native American		
				Region: 14% Urban 72% Suburban 14% Rural		
				Teaching Experience: 57% General Education 57%		
				Bilingual Education 29% Special Education 29%		
				Administration		
	August '21	Virtual	7	Gender: 100% Female	353	13
	5			Ethnicity: 100% White or Caucasian		_
				Region: 14% Urban, 29% Suburban, 57% Rural		
				Teaching Experience: 43% General Education, 14%		
				Bilingual Education, 14% Administration, 29% Other		
	July '22	Virtual	9	Gender: 56% Female, 33% Male, 11% Nonbinary	43	2
				Ethnicity: 11% Hispanic or Latino, 89% White or Caucasian		
				Region: 22% Rural, 45% Suburban, 33% Urban		
				Teaching Experience: 23% 1 to 5 years, 33% 6 to 10		
				years, 11% 11 to 15 years, 33% More than 20 years		
Rhode	October '22	Virtual	20	Gender: 85% Female, 15% Male	115	22
island				Etnnicity: 10% Black or African American, 5% Multiracial or		
				Biracial, 85% White or Caucasian		
				Region: 10% Rural, 25% Suburban, 30% Urban, 35% Did		
				Not Respond		

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Teaching Experience: 20% 1 to 5 years, 15% 6 to 10 years, 10% 11 to 15 years, 25% 16 to 20 years, 30% More than 20 years		
South Dakota	October '19	Pierre, SD	26	Gender: 81% Female, 19% Male Ethnicity: 4% American Indian or Alaska Native, 4% Asian, 92% White or Caucasian Region: 65% Rural, 15% Suburban, 15% Urban, 4% Not Applicable Teaching Experience: 12% 1 to 5 years, 12% 6 to 10 years, 19% 11 to 15 years, 19% 16 to 20 years, 38% More than 20 years	а	a
U.S. Virgin Islands	October '21	Virtual	18	Gender: 72% Female, 28% Male Ethnicity: 6% Asian, 88% Black or African American, 6% White or Caucasian Region: 17% Rural, 17% Urban, 11% Suburban, 17% Not Applicable, 38% Did Not Respond Teaching Experience: 22% 1 to 5 years, 5% 6 to 10 years, 17% 11 to 15 years, 17% 16 to 20 years, 39% More than 20 years	299	28
Utah	July '17	Park City, UT	6	Gender: 100% Female Ethnicity: 33% American Indian or Alaska Native, 33% Hispanic or Latino, 33% White or Caucasian Region: 17% Rural, 83% Did Not Respond Teaching Experience: 17% General Education, 17% Special Education, 33% Administration, 33% Other	44	2
	December '17	Salt Lake City, UT	6	Gender: 83% Female, 17% Make Ethnicity: 33% Black or African American, 17% Hispanic or Latino, 33% Native American, 17% Not Applicable Teaching Experience: 33% Administration, 83% Other	48	1
	October '19	Provo, UT	11	Gender: 27% Female, 73% Did Not Respond Ethnicity: 9% Hispanic or Latino, 18% White or Caucasian, 73% Did Not Respond Region: 9% Urban, 91% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% More than 20 years, 73% Did Not Respond	31	0
	July '20 ^b	Virtual	9	Gender: 22% Female, 78% Did Not Respond Ethnicity: 22% Hispanic or Latino, 78% Did Not Respond Region: 100% Did Not Respond	38	1

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Teaching Experience: 11% None, 11% 6 to 10 years, 78% Did Not Respond		
	December '20	Virtual	6	Gender: 50% Female, 50% Did Not Respond Ethnicity: 17% Hispanic or Latino, 33% White or Caucasian, 50% Did Not Respond Region: 17% Suburban, 83% Did Not Respond Teaching Experience: 17% 1 to 5 years, 33% 16 to 20 years, 50% Did Not Respond	14	0
	July '21 ^b	Virtual	11	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	64	0
	August '21	Virtual	6	Gender: 100% Female Ethnicity: 17% Hispanic or Latino, Native American or Alaskan American, White or Caucasian, Multiracial or Biracial, 83% White or Caucasian Region: 33% Rural, 33% Suburban, 17% Urban, 17% Did Not Respond Teaching Experience: 17% Less than 1 year, 33% 1 to 5 years, 50% More than 20 years	67	1
	September '22	Salt Lake City, UT	28	Gender: 81% Female, 19% Male Ethnicity: 2% American Indian or Alaska Native, 1% Asian, 2% Hispanic or Latino, 1% Mediterranean, 80% White or Caucasian Region: 26% Rural, 52% Suburban, 16% Urban, 7% Not Applicable Teaching Experience: 29% 1 to 5 years, 39% 6 to 10 years, 3% 11 to 15 years, 7% 16 to 20 years, 7% More than 20 years, 16% Not Applicable	111	12
West Virginia	January '17	Charleston, WV	28°	Not Collected	34	а
-	January '19	Charleston, WV	10	Gender: 89% Female, 11% Male Ethnicity: 11% Black or African American, 89% White or Caucasian Region: 100% Rural	191	a

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Teaching Experience: 100% General Education		
	July '21 ^b	Virtual	2	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years	12	1
	June/ August '22 ^b	Virtual	3	State: 33% Hawaii, 67% Utah Gender: 100% Female Ethnicity: 33% Asian or Pacific Islander, 33% White or Caucasian, 33% Multiracial or Biracial Region: 33% Suburban, 67% Did Not Respond Teaching Experience: 33% None, 33% 11 to 15 years, 33% More than 20 years	13	0
Wyoming	December '17	Cheyenne, WY	5	Not Collected	32	3
	October '18	Cheyenne, WY	5	Not Collected	39	0
	November '19	Cheyenne, WY	7	Gender: 14% Female, 86% Male Teaching Experience: 14% 6 to 10 years, 57% 11 to 20 years, 29% 21 or more years	44	1
	August '20	Virtual	14	Gender: 29% Female, 7% Male, 64% Did Not Respond Ethnicity: 36% White or Caucasian, 64% Did Not Respond Region: 22% Rural, 78% Did Not Respond Teaching Experience: 7% 11 to 15 years, 7% 16 to 20 years, 22% More than 20 years, 64% Did Not Respond	37	1
	June/ July '21	Virtual	6	Gender: 67% Female, 17% Male, 17% Did Not Respond Ethnicity: 83% White or Caucasian, 17% Did Not Respond Region: 50% Rural, 17% Suburban, 33% Did Not Respond Teaching Experience: 17% 6 to 10 years, 50% 11 to 15 years, 17% More than 20 years, 17% Did Not Respond	39	39
	July '21 ^b	Virtual	4	State: 22% Connecticut, 4% Hawaii, 9% Idaho, 4% Montana, 4% Oregon, 4% Rhode Island, 13% South Dakota, 4% Utah, 3% Vermont, 12% West Virginia, 13% Wyoming, 4% Did Not Respond	28	0

State/Item Bank	Date	Location	Number of Committee Members	Fairness Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Teaching Experience: 9% 1 to 5 years, 18% 6 to 10 years, 29% 11 to 15 years, 19% 16 to 20 years, 25% More than 20 years		
	June/ August '22 ^b	Virtual	6	 State: 17% Connecticut, 17% Hawaii, 50% Utah, 17% West Virginia Gender: 100% Female Ethnicity: 17% Asian or Pacific Islander, 50% White or Caucasian, 33% Multiracial or Biracial Region: 17% Suburban, 17% Urban, 67% Did Not Respond Teaching Experience: 33% None, 33% 11 to 15 years, 33% More than 20 years 	37	0

^aAs of the time of writing this report, the number of science items reviewed and/or rejected by Fairness Committees is not currently available.

^bItems were reviewed in a combined Fairness Committee Meeting that included ICCR and MOU state-owned items. Items reviewed in the combined meetings are displayed by their respective state or bank of ownership.

^cThe number of Committee Members includes the total members across ELA, math, and science committees. The specific number of science committee members is currently unavailable.

Appendix 2-G

Sample Data Review Training Materials

Sample Data Review Training Materials

Item Data Review

- Item Data Review is the final step before items move to the operational pool
- For every state: data review is carried out for the items owned by the state
- Decision to send an item to data review is based on empirical data
- Statistics are computed at the assertion-level
- Inclusion in data review is decided at the item level, not at the assertion level
 - Inclusion in data review is based on statistical flags that rely on assertion level statistics but are evaluated for the entire item

Cambium Assessment, Inc.

2
Item Data Review: Flagging Rules

- Common flagging rules across states
- Flagging is based on business rules related to
 - Difficulty of the item
 - Relation between the score on item and the overall student's score
 - Response time of the item
 - Statistical flags for differential item functioning

Cambium Assessment, Inc.

Flagging Rules: *P*-value

- The *p*-value is the proportion of students for which the assertion is TRUE
- Corresponds to the difficulty of an item in a traditional assessment
- Across an item bank, we want to see assertions with *p*-values across the full range to be able to precisely measure proficiency across all proficiency levels
 - A low *p*-value is not bad per se
- However, we want to make sure the low *p*-value is not a result of an item being misleading

Cambium Assessment, Inc.

Flagging Rules: *P*-value

- Criteria for clusters:
 - average p-value < .30 (across the assertions within a cluster)
 - average p-value > .85 (across the assertions within a cluster)
- Criteria for stand-alone items (typically has 1-3 assertions):
 - average p-value < . 15 (across the assertions within a stand-alone item)
 - average p-value > .95 (across the assertions within a stand-alone item)

Cambium Assessment, Inc.

Flagging Rules: Item-Total Correlation

- We expect students who do well on the test overall to have a higher probability of doing well on individual assertions
- The item-total correlation describes that relation
- Criteria
 - Average item-total (biserial) correlation < .25
 - One or more assertions with an item-total correlation < 0.05

Cambium Assessment, Inc.

Flagging Rules: Differential Item Functioning

- Fair items behave similar across groups
- Probability of answering correctly is the same for all students of similar ability regardless of group membership
- Groups are defined by
 - Gender
 - Ethnicity
 - Economically disadvantaged vs. not
- ELL vs. not ELL
- Special Education vs. not

Cambium Assessment, Inc.

- Method: Mantel-Haenszel (Holland & Thayer, 1988)
 - Compares performance on an item (i.e., assertion for assertion-based scoring)
 between reference and focal groups conditional on overall performance
 - Using the theta estimate as stratification variable

Cambium Assessment, Inc.

- Severity of possible bias based on significance testing and effect size
 - "A" No statistical evidence of DIF
 - "B" Evidence for potential mild DIF
 - "C" Evidence for potential severe DIF
- Direction of possible bias
 - "-" assertion favors reference groups (e.g., whites/male/non ELLs)
 - "+" assertion favors focal group

Cambium Assessment, Inc.

- DIF Criterion
 - For clusters: 2 or more assertions show 'C' DIF in the same direction
 - For stand-alone items: 1 or more assertions show 'C' DIF in the same direction

Cambium Assessment, Inc.

Flagging Rules: Timing

- We want a good balance between the amount of information an item provides, and the time students spend on the item
- Criteria
 - For clusters: percentile 80 > 15 minutes
 - » A percentile 80 of x minutes: 80% of the students spent x minutes or less on the item
 - For stand-alone items: percentile 80 > 3 minutes
 - Assertions per minute < .5 for clusters and stand-alone items

Cambium Assessment, Inc.

Item Data Review: Process

- Facilitator presents the item
- Item is presented with information on
 - Grade
 - Discipline
 - Disciplinary Core Idea
 - Performance Expectation
- Statistics on the assertions of the item are presented
 - Including the reason for flagging

Cambium Assessment, Inc.

Item Data Review: Process

- Evaluation of item (stimulus, interactions, assertions)
- For every item, one of the following decisions is made
 - Reject
 - Accept as is

Cambium Assessment, Inc.

Appendix 2-H

Data Review Committee Participant Details

Data Review Committee Participant Details

Table H-1. Data Review Committee Participants, Science

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
Connecticut	August '18	New Britain, CT	29	Gender: 88% Female, 12% Male	18	11
	August '19	Cromwell, CT	29	Gender: 83% Female, 17% Male	53	17
	August '21	Virtual	19	Gender: 63% Female, 21% Male, 16% Did Not Respond Ethnicity: 84% White or Caucasian, 16% Did Not Respond Region: 21% Suburban, 21% Urban, 58% Did Not Respond Teaching Experience: 5% 1 to 5 years, 5% 6 to 10 years, 16% 11 to 15 years, 21% 16 to 20 years, 37% More than 20 years, 16% Did Not Respond	51	12
	August '22	Virtual	15	Gender: 73% Female, 20% Male, 7% Did Not Respond Ethnicity: 7% Hispanic or Latino, 87% White or Caucasian, 7% Did Not Respond Region: 60% Suburban, 7% Urban, 33% Did Not Respond Teaching Experience: 13% 6 to 10 years, 27% 16 to 20 years, 53% More than 20 years, 7% Did Not Respond	19	6
	September '23	Virtual	12	Gender: 83% Female, 17% Male Ethnicity: 100% White or Caucasian Region: 8% Rural, 67% Suburban, 17% Urban, 8% Not Applicable Teaching Experience: 17% 11 to 15 years, 25% 16 to 20 years, 58% More than 20 years	14	21
Hawaii	August '18	Honolulu, HI	18	Gender: 72% Female, 28% Male	32	3
	August '19	Honolulu, HI	18	Gender: 71% Female, 29% Male Ethnicity: 12% American Indian and White, 41% Asian, 6% Asian and White, 12% Hispanic and White, 18% Native Hawaiian or Pacific Islander, 12% White or Caucasian Teaching Experience: 53% General Education, 6% General Education with SPED Certification, 12% Special Education, 29% Other	37	13

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
	August '21ª	Virtual	7	 State: 14% Connecticut, 29% Hawaii, 14% Idaho, 29% West Virginia, 14% Wyoming Gender: 86% Female, 14% Male Ethnicity: 86% White or Caucasian, 14% Did Not Respond Region: 14% Rural, 29% Suburban, 57% Did Not Respond Teaching Experience: 29% 11 to 15 years, 14% 16 to 20 years, 29% More than 20 years, 14% Did Not Respond 	26	8
	August '22ª	Virtual	12	 State: 17% Connecticut, 17% Hawaii, 8% Idaho, 25% Oregon, 33% Wyoming Gender: 75% Female, 25% Male Ethnicity: 8% Asian or Pacific Islander, 82% White or Caucasian Region: 50% Rural, 42% Suburban, 8% Did Not Respond Island: 8% Not Applicable, 8% Oahu, 75% Did Not Respond Teaching Experience: 33% 6 to 10 years, 8% 16 to 20 years, 58% More than 20 years 	49	8
	August '23ª	Virtual	15	State: 7% Connecticut, 13% Hawaii, 20% Montana, 7% New Hampshire, 40% Oregon, 7% Utah, 7% Wyoming Gender: 60% Female, 40% Male Ethnicity: 13% Asian or Pacific Islander, 7% Hispanic or Latino, 7% Native American or Alaskan, 73% White or Caucasian Region: 27% Rural, 13% Urban, 60% Did Not Respond Teaching Experience: 20% 1 to 5 years, 27% 6 to 10 years, 7% 11 to 15 years, 47% 16 to 20 years	26	5
ICCR	July '18	Virtual	18	Not Collected	84	8
	August '19 ^b	Virtual	_	_	43	3
	August '21ª	Virtual	11	 State: 27% Connecticut, 9% Hawaii, 18% Idaho, 36% West Virginia, 9% Wyoming Gender: 82% Female, 18% Male Ethnicity: 54% White or Caucasian, 46% Did Not Respond Region: 9% Rural, 27% Suburban, 64% Did Not Respond Teaching Experience: 9% 6 to 10 years, 9% 11 to 15 years, 36% More than 20 years, 46% Did Not Respond 	75	6
	August '22ª	Virtual	20	State: 15% Connecticut, 20% Idaho, 5% North Dakota, 35% Oregon, 5% South Dakota, 20% Wyoming Gender: 85% Female, 15% Male	68	14

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Ethnicity: 5% Asian or Pacific Islander, 95% White or Caucasian Region: 30% Rural, 25% Suburban, 15% Urban, 30% Did Not Respond Teaching Experience: 10% 1 to 5 years, 35% 6 to 10 years, 15% 16 to 20 years, 40% More than 20 years		
	August '23ª	Virtual	19	 State: 11% Connecticut, 21% Hawaii, 5% Montana, 5% New Hampshire, 21% Oregon, 16% Utah, 5% West Virginia, 16% Wyoming Gender: 74% Female, 26% Male Ethnicity: 16% Asian or Pacific Islander, 84% White or Caucasian Region: 21% Rural, 11% Suburban, 5% Urban, 63% Did Not Respond Teaching Experience: 21% 1 to 5 years, 16% 6 to 10 years, 16% 16 to 20 years, 47% More than 20 years 	54	9
ldaho	August '19	c	10	Gender: 70% Female, 20% Male, 1% Did Not Respond Ethnicity: 100% White or Caucasian Region: 60% Rural, 40% Suburban Teaching Experience: 60% General Education, 2% Administration, 2% Coach	12	6
	August '21ª	Virtual	9	State: 11% Hawaii, 56% Idaho, 11% West Virginia, 22% Wyoming Gender: 89% Female, 11% Male Ethnicity: 89% White or Caucasian, 11% Did Not Respond Region: 11% Rural, 22% Suburban, 67% Did Not Respond Teaching Experience: 22% 6 to 10 years, 22% 11 to 15 years, 11% 16 to 20 years, 33% More than 20 years, 11% Did Not Respond	60	5
	August '22ª	Virtual	8	State: 25% Connecticut, 13% Idaho, 25% Oregon, 38% Wyoming Gender: 63% Female, 38% Male Ethnicity: 13% Hispanic or Latino, 88% White or Caucasian Region: 38% Rural, 50% Suburban, 13% Did Not Respond Teaching Experience: 13% 1 to 5 years, 13% 6 to 10 years, 25% 11 to 15 years, 13% 16 to 20 years, 38% More than 20 years	4	0

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
	August '23ª	Virtual	17	 State: 12% Connecticut, 12% Hawaii, 6% Idaho, 6% Montana, 6% New Hampshire, 24% Oregon, 35% Utah Gender: 71% Female, 24% Male, 6% Prefer Not to Say Ethnicity: 6% Asian or Pacific Islander, 6% Hispanic or Latino, 6% Native American or Alaskan, 71% White or Caucasian, 12% Did Not Respond Region: 29% Rural, 18% Suburban, 53% Did Not Respond Teaching Experience: 12% 6 to 10 years, 24% 16 to 20 years, 53% More than 20 years, 12% Did Not Respond 	5	0
Montana	September '21	Virtual	4	Gender: 50% Female, 50% Did Not Respond Ethnicity: 50% White or Caucasian, 50% Did Not Respond Region: 50% Rural, 50% Did Not Respond Teaching Experience: 25% 6 to 10 years, 25% 16 to 20 years, 50% Did Not Respond	17	4
	September '22	Virtual	5	Gender: 100% Female Ethnicity: 100% White or Caucasian Region: 60% Rural, 40% Suburban Teaching Experience: 40% 6 to 10 years, 20% 16 to 20 years, 40% More than 20 years	17	3
	August '23ª	Virtual	11	 State: 18% Hawaii, 18% Montana, 9% New Hampshire, 9% Oregon, 36% Utah, 9% West Virginia Gender: 100% Female Ethnicity: 18% Hispanic or Latino, 73% White or Caucasian, 9% Did Not Respond Region: 36% Rural, 64% Did Not Respond Teaching Experience: 9% 6 to 10 years, 18% 16 to 20 years, 64% More than 20 years, 9% Did Not Respond 	12	3
Multi-State	August '18	Virtual	-	_	9	6
Science Assessmen	August '19	Virtual	-	-	14	4
t (Rhode	August '21	Virtual	-	_	18	9
island and Vermont)	September '22	Virtual	-	_	11	7
Oregon	September '18	Salem, OR	11	Gender: 82% Female, 18% Male Ethnicity: 100% White or Caucasian Region: 73% Rural, 27% Urban	44	6

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary		Number of Items Rejected by Committees
				Teaching Experience: 64% General Education, 55% Bilingual Education, 36% Special Education, 18% Administration, 18% Other		
	August '19	Virtual	4	Gender: 50% Female, 50% Male Ethnicity: 100% White or Caucasian Region: 50% Rural, 50% Urban Teaching Experience: 50% General Education, 25% Bilingual Education, 25% Special Education, 25% Administration, 75% Other	8	7
	August '22ª	Virtual	8	 State: 38% Connecticut, 38% Idaho, 13% Wyoming, 13% Did Not Respond Gender: 75% Female, 13% Male, 13% Did Not Respond Ethnicity: 88% White or Caucasian, 13% Did Not Respond Region: 25% Rural, 13% Suburban, 25% Urban, 38% Did Not Respond Teaching Experience: 25% 6 to 10 years, 13% 11 to 15 years, 13% 16 to 20 years, 38% More than 20 years, 13% Did Not Respond 	31	8
	August '23ª	Virtual	16	 State: 6% Connecticut, 6% Idaho, 13% Montana, 38% Oregon, 19% Utah, 6% West Virginia, 13% Wyoming Gender: 75% Female, 19% Male, 6% Prefer Not to Say Ethnicity: 13% Asian or Pacific Islander, 6% Native American or Alaskan, 75% White or Caucasian, 6% Did Not Respond Region: 13% Rural, 19% Suburban, 6% Urban, 63% Did Not Respond Teaching Experience: 19% 1 to 5 years, 25% 6 to 10 years, 25% 16 to 20 years, 25% More than 20 years, 6% Did Not Respond 	12	2
Rhode Island	September '23	Virtual	_		17	6
South	September '21	Virtual	_	_	15	0
Dakota	September '22	Virtual	_	_	4	1
	September '23	Virtual	_	_	6	2
Utah	August '18	Salt Lake City, UT	16	Gender: 93% Female, 7% Male Ethnicity: 87% White or Caucasian, 13% Did Not Respond Region: 13% Suburban, 27% Rural, 60% Did Not Respond Teaching Experience: 100% General Education	40	6
	September '21	Virtual	6	Gender: 63% Female, 38% Male	11	3

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Ethnicity: 13% Native Hawaiian or Pacific Islander, 88% White or Caucasian Region: 50% Rural, 13% Suburban, 38% Urban Teaching Experience: 38% 6 to 10 years, 38% 11 to 15 years, 25% More than 20 years		
	September '22	Salt Lake City, UT	17	Gender: 88% Female, 13% Male Ethnicity: 6% Asian, 12% Hispanic or Latino, 6% Mixed, 77% White or Caucasian Region: 12% Rural, 41% Suburban, 41% Urban, 6% Not Applicable Teaching Experience: 6% Less than 1 year, 29% 1 to 5 years, 36% 6 to 10 years, 18% 11 to 15 years, 12% More than 20 vears	11	6
	September '23	Salt Lake City, UT	20	Gender: 70% Female, 30% Male Ethnicity: 5% Asian, 10% Hispanic, 10% Latino, 75% White or Caucasian Region: 10% Rural, 50% Suburban, 25% Urban, 15% Not Applicable Teaching Experience: 10% Less than 1 year, 25% 1 to 5 years, 20% 6 to 10 years, 20% 11 to 15 years, 10% More than 20 years, 10% Not Applicable, 5% Did Not Respond	6	0
West	July '18	с	4	Not Collected	3	1
Virginia	September '19	С	4	Not Collected	7	6
	August '21ª	Virtual	4	 State: 25% Hawaii, 50% West Virginia, 25% Wyoming Gender: 100% Female Ethnicity: 75% White or Caucasian, 25% Did Not Respond Region: 25% Rural, 25% Suburban, 50% Did Not Respond Teaching Experience: 50% 11 to 15 years, 25% More than 20 years, 25% Did Not Respond 	7	3
	August '22ª	Virtual	9	 State: 22% Connecticut, 33% Idaho, 11% Oregon, 33% Wyoming Gender: 89% Female, 11% Male Ethnicity: 100% White or Caucasian Region: 56% Rural, 11% Suburban, 11% Urban, 22% Did Not Respond Teaching Experience: 11% 1 to 5 years, 22% 6 to 10 years, 11% 11 to 15 years, 11% 16 to 20 years, 44% More than 20 years 	10	4

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
	August '23ª	Virtual	11	 State: 9% Connecticut, 18% Hawaii, 9% Montana, 9% New Hampshire, 9% Oregon, 45% Utah Gender: 82% Female, 9% Male, 9% Prefer Not to Say Ethnicity: 9% Hispanic or Latino, 82% White or Caucasian, 9% Did Not Respond Region: 36% Rural, 9% Suburban, 56% Did Not Respond Teaching Experience: 9% 6 to 10 years, 27% 16 to 20 years, 56% More than 20 years, 9% Did Not Respond 	12	3
Wyoming	October '18	Cheyenne, WY	12	Gender: 75% Female, 25% Male Teaching Experience: 8% 3 to 5 years, 8% 6 to 10 years, 58% 11 to 20 years, 25% 21 or more years	16	6
	August '19	Cheyenne, WY	10	Gender: 90% Female, 10% Male Region: 40% Suburban, 60% Rural Teaching Experience: 90% General Education, 10% Administration	16	5
	August '21ª	Virtual	8	 State: 38% Connecticut, 13% Hawaii, 13% West Virginia, 38% Wyoming Gender: 75% Female, 25% Male Ethnicity: 75% White or Caucasian, 25% Did Not Respond Region: 13% Rural, 25% Suburban, 13% Urban, 50% Did Not Respond Teaching Experience: 13% 11 to 15 years, 63% More than 20 years, 25% Did Not Respond 	16	4
	August '22ª	Virtual	12	 State: 17% Connecticut, 8% Hawaii, 17% Idaho, 17% Oregon, 42% Wyoming Gender: 67% Female, 33% Male Ethnicity: 8% Asian or Pacific Islander, 8% Hispanic or Latino, 83% White or Caucasian Region: 42% Rural, 50% Suburban, 8% Did Not Respond Teaching Experience: 8% 1 to 5 years, 25% 6 to 10 years, 17% 11 to 15 years, 8% 16 to 20 years, 42% More than 20 years 	19	3
	August '23ª	Virtual	17	State: 12% Connecticut, 12% Hawaii, 6% Idaho, 6% Montana, 6% New Hampshire, 24% Oregon, 35% Utah Gender: 71% Female, 24% Male, 6% Prefer Not to Say Ethnicity: 6% Asian or Pacific Islander, 6% Hispanic or Latino, 6% Native American or Alaskan, 71% White or Caucasian, 12% Did Not Respond	8	1

State/Item Bank	Date	Location	Number of Committee Members	IDR Committee Member Demographic Summary	Number of Items Reviewed	Number of Items Rejected by Committees
				Region: 29% Rural, 18% Suburban, 53% Did Not Respond Teaching Experience: 18% 6 to 10 years, 18% 16 to 20 years, 53% More than 20 years, 12% Did Not Respond		

Note. MSSA, Rhode Island, and South Dakota-owned items were reviewed by Rhode Island Department of Education and Vermont Agency of Education science content experts, the Rhode Island Department of Education, and the South Dakota Department of Education, respectively.

^aCombined Item Data Review Meetings were conducted for multiple states in 2021, 2022, and 2023 (184 items were reviewed in the combined meeting format for Hawaii, Idaho, West Virginia, Wyoming, and ICCR items in 2021; 181 items were reviewed in the combined meeting format for Hawaii, Idaho, Oregon, West Virginia, Wyoming, and ICCR items in 2022, and 129 items were reviewed in the combined meeting format for Hawaii, Idaho, Montana, Oregon, West Virginia, Wyoming, and ICCR items in 2022, and 129 items were reviewed in the combined meeting format for Hawaii, Idaho, Montana, Oregon, West Virginia, Wyoming, and ICCR items in 2022, and 129 items were reviewed in the combined Item Data Review Meetings; in 2022, 38 committee members participated in the combined Item Data Review Meetings. Items reviewed in the combined meetings are displayed by their respective state or bank of ownership.

^bDuring the summer 2019, ICCR field-test items underwent committee review in Connecticut, Hawaii, and Idaho.

^cThe specific location of the Data Review Committee Meeting is unavailable at the time of writing this report.

Appendix 2-I

Example Item Interactions

Interaction Types Available in the ISAT in Science

Review of Different Interaction Types

Interaction Type	Associated Sub-Types	Legacy Item Types Supported
<u>Choice</u>	Multiple Choice	MC
	Multiple Select	MS
	Scaffolding	ASI2, ASI3
Text Entry	Simple Text Entry	EA, ECR, LA, OE, SA, SR, WCR, RW, SCR
	Embedded Text Entry	CL, FI
	Natural Language	NL
	Extended Response	ER
Table	Table Match	MI
	Table Input	ТІ
	Column Match	MI
<u>Edit Task</u>	<u>Edit Task</u>	ET
	Edit Task with Choice	ETC
	Edit Task Inline Choice	ETC
Hot Text	Selectable	HTQ
	Re-orderable	НТ
	Drag-from-Palette	DnD
	<u>Custom</u>	HTQ, HT, DnD
<u>Equation</u>	N/A	EQN
Grid	Grid	GI
	Hot Spot	GI
	Graphic Gap Match	GI
Simulation*	N/A	SIM

Note. the abbreviations correlate to the attributes used in AIR's Item Tracking System

Multiple-Choice Interactions

Multiple-Choice (MC) interactions require students to select a single option from a list of possible answer options. The number and orientation of answer options in a multiple-choice interaction are

configurable. Answer options may appear vertically, horizontally, vertically-stacked (in a specified number of columns), or horizontally-stacked (in a specified number of rows).

What is the product of 68 and 90)?
A 612	
B 1,260	
6,120	
b 6,300	

Multiple-Select Interactions

Multiple-Select interactions require students to select one or more options from a list of possible answer options. The number and orientation of answer options in a multiple-select interaction are configurable. Answer options may appear vertically, horizontally, horizontally-stacked (in a specified number of rows), or vertically-stacked (in a specified number of columns).

Select the to ½.	values that	are	greater than or equal
	0.6		.45
	2/6		One Fifth
	5/8		2/10

Text Entry Interactions

The Text Entry Interaction Editor allows you to create content for the following interaction types:

- <u>Simple Text Entry Interactions</u>
- Embedded Text Entry Interactions
- <u>Natural Language Interactions</u>
- Extended Response Interactions

Simple Text Entry Interactions

Simple Text Entry interactions require students to type a response in a text box. For Simple Text Entry interactions, we can allow you to specify the maximum response length for the text box and the type of text editor available to students.

Embedded Text Entry Interactions

Embedded Text Entry interactions require students to type their response in one or more text boxes that are embedded in a section of read-only text.

Fill in the blanks in the sentence below.				
The quick	fox jumps over the lazy			

Extended Response Interactions

Extended Response interactions require students to type a response in a text box. Extended Response interactions are scored by an uploaded essay scoring model that analyzes the student's response to identify variations of acceptable key words and phrases. For Extended Text Entry interactions, we can allow you to specify the maximum response length for the text box and the type of text editor available to students.

Select a sentence in the passage that does not fit with the overall structure and explain why it is disruptive to the organization of the passage. Type your answer in the space provided.

Alert: Extended Response interactions cannot be combined with any other interactions in the item.

Table Entry Interaction

The Table Entry Interaction Editor allows you to create content for the following interaction types:

- <u>Table Match Interactions</u>
- <u>Table Input Interactions</u>
- <u>Column Match Interactions</u>

Table Match Interactions

Table Match interactions arrange two sets of match options in a table, with one set listed in columns and the other set listed in rows. Students match options in the columns to options in the rows by marking checkboxes in the cells where the columns and rows intersect.

For each number listed in the rows of the table, mark the checkboxes for each column that describes that number.									
	Perfect Prime Odd Even Square Number Number Number								
5									
12									
9									

Table Match interactions allow you to customize the number of match options in each set and enter the content for each match option. You can also set restrictions on the number of matches students can make. By default, the panel includes a basic table consisting of three rows and columns (including the row header and column header).

Table Input Interactions

Table Input interactions provide students with a table that includes one or more blank cells. Each blank cell displays a text box in which students can type their response.

Enter a stage direc in the table below.	tion that you might give to each theater technici	an listed
The first one has	been done for you.	
Theater technicians	Stage direction	
Set designer	A circular bench around a small obelisk	
Props manager		
Sound technician		
Lighting technician		

Table Input interactions allows you to customize the number of rows and columns in the table, specify which cells display text boxes, and enter content for the read-only cells. By default, the panel includes a basic table consisting of three rows and columns (including the row header and column header).

Alert: If a table does not include row headers, then it must include column headers. If a table does not include column headers, then it must include row headers.

Column Match Interactions

Column Match interactions provide students with two columns that each contain a set of match options. Students respond to the interaction by selecting a match option in the left column and then selecting the corresponding match option in the right column. A match option in one set may have one, multiple, or no matches in the other set.

Match the words in the left column with their synonyms in the right column.					
Нарру		Despondent			
Sad		Famished			
Angry		Elated			
Hungry		Weary			
Tired		Irate			

Column Match interactions allows you to customize the number of match options in each set and enter the content for each match option. By default, the panel includes two single-column tables, each of which includes two match options. You can also set restrictions on the number of matches students can make.

Edit Task Interactions

The Edit Task Interaction Editor allows you to create content for the following interaction types:

- Edit Task Interactions
- Edit Task with Choice Interactions
- Edit Task Inline Choice Interactions

Edit Task Interactions

Edit Task interactions provide students with a sentence or paragraph containing one or more tagged text elements. Tagged elements usually contain an error, such as improper spelling or grammar. To respond to these interactions, students click a tagged element and enter corrected text in an editing window. The entered text replaces the original tagged text.

The sentence below contains several grammatical mistakes. Click the highlighted words to correct the grammar.

```
The quick foxes jumps over the lazy, dogs.
```

Edit Task interactions allow you to enter the text that appears in the response area and tag elements within the text that students can edit.

Warning: You cannot include hand-scored and machine-scored interactions in the same item.

Edit Task with Choice Interactions

Edit Task with Choice interactions are similar to Edit Task interactions. The only difference is that when responding to Edit Task with Choice interactions, students replace the tagged text elements with options selected from a drop-down list.

Edit Task with Choice interactions allow you to enter the text that appears in the response area and tag elements within the text that students can edit.

Edit Task Inline Choice Interactions

Edit Task Inline Choice interactions are similar to Edit Task with Choice interactions. The only difference is that students select replacement options from a drop-down list embedded within the read-only text, rather than accessing the drop-down list via a pop-up window.

Inlin	e Choice Interaction (Dropdown)		
The	event	happened in date •. It became	change +
	event		
Inlin	Change in a planet name		
The	Demotion of Pluto		
Ine	Addition of a planet to the solar system		

Hot Text Interactions

The Hot Text Interaction Editor allows you to create content for the following interaction types:

- <u>Selectable Hot Text Interactions</u>
- <u>Re-orderable Hot Text Interactions</u>
- Drag-from-Palette Hot Text Interactions
- <u>Custom Hot Text Interactions</u>

Selectable Hot Text Interactions

Selectable Hot Text interactions require students to select one or more text elements in the response area.

Select the sentences that support the inference that the area is in danger of losing its moose population. Select **all** that apply.

A similar boom-and-bust cycle occurs between predator and prey. Ten times the size of a wolf, a moose has long, strong legs and a dangerous kick. So wolves prey mainly on old and weak animals. Good hunting means food for the whole pack. Wolves then raise lots of pups, and their numbers increase. More wolves mean more mouths to feed and more moose get eaten. However, when the moose population decreases, wolves starve.

Selectable Hot Text interactions allows you to set the minimum and maximum number of elements students can select, enter the text that appears in the response area, and tag the text elements that will be selectable.

Re-orderable Hot Text Interactions

Re-orderable Hot Text interactions require students to click and drag hot text elements into a different order.

Place the following sentences in the correct order.

```
Hey Jude. And make it better. Don't be afraid. Take a sad song.
```

Re-orderable Hot Text interactions allow you to enter the re-orderable text elements in the response area. You can specify the elements' orientation and set them to appear in random order to students.

Drag-from-Palette Hot Text Interactions a.k.a. Hot Text Gap Match

Drag-from-Palette Hot Text interactions require students to drag elements from a palette into the available blank table cells or "gaps" (text boxes) in the response area. Palette elements may consist of text and/or images. Students may be able to drag the same palette element into multiple gaps, depending on the interaction's configuration.

Prag and drop the characterist	tics into the appropriate table cells be
Fortunato's character	Montressor's character
Sinister and calculating	
Cowardly and irreverent	
Egotistical and rude	
Lazy and inconsiderate	

Drag-from-Palette Hot Text interactions allow you to enter the elements that appear in the palette, enter static text for the response area, and create the gap targets where students can drag the text elements. You can enter all of the elements in a single text box or enter each segment in its own text box.

- Can set a minimum/maximum number of times a student is required/allowed to use a specific palette object
- Only supports drag-and-drop of palette items (images or plain text) onto pre-defined drop targets ("gaps" or "blanks") in the body text
 - These palette items are always confined to a special palette region (no "preplacing" them)
 - There is some control over palette placement
 - The items can only be placed in predefined "target" regions

Custom Hot Text Interactions

Custom Hot Text interactions combine the functionality of the other Hot Text interaction subtypes. Students responding to a Custom Hot Text interaction may need to select text elements, rearrange text elements, and/or drag text elements from a palette to blank table cells or drop targets in the response area. In many ways, this is the grid of the text-interaction world. In practice, it is typically used to do drag-and-drop with text, but it can technically do more:

- Supports dragging and dropping text elements onto drop target areas
 - Text elements can originally be placed anywhere in the interaction (there's no dedicated palette)
 - Multiple elements can be dropped onto a target
 - this constitutes a "group"
 - much like grid hotspots, you can set constraints on the group

- Supports selectable text elements
- Like grid hotspots, these too can be grouped

Use the word bank to fill in the blank in the sentence below. Then, select all the words in the sentence that are nouns.

Word bank:							
young	dull	good	rich				
Sentence:							
All work	All work and no play makes Jack a boy.						

Custom Hot Text interactions allow you to create groups of text elements, as well as the drop targets and static text that appear in the response area. When you create a group of text elements, you must assign a Hot Text functionality to that group. The following functionalities are available:

- Selectable: When you assign this functionality to a group, the text elements in the group behave like elements in a Selectable Hot Text interaction. You cannot add drop target elements to this kind of group.
- **Draggable:** When you assign this functionality to a group, the text elements in the group behave like elements in a Re-Orderable Hot Text interaction. If you assign this functionality to a group and also add drop targets to the group, the text elements in the group behave like elements in a Drag-from-Palette Hot Text interaction.

You can create as many groups as you wish, but you can only assign one Hot Text functionality to each group.

Equation Interaction Editor

The Equation Interaction Editor allows you to create content for Equation interactions only. Equation interactions require students to enter a response into input boxes using an on-screen keypad, which may consist of special mathematics characters. Students can also enter their response via a physical keyboard, but they cannot enter any characters that are not included in the on-screen keyboard.

Use the quadratic formula to find the values of x for the following equation:
$y = x^2 + 2x - 3$
x =
x =
123 x y
456+-*÷
789 < ≤ = ≥ >

Equation interactions allow you to select the buttons to include in the on-screen keypad, enter static text in the response area, and specify the number of input boxes to include in the response area. When selecting buttons to include in the keypad, you can add individual buttons or an entire row or tab of buttons.

Grid Interactions

The Grid Interaction Editor allows you to create content for the following interaction types:

- Grid Interactions
- Hot Spot Interactions
- <u>Graphic Gap Match Interactions</u>

Note: Although there are three options available in the **Interaction Type** drop-down list, the generic **Grid** option allows you to create interactions with functionality similar to Hot Spot and Graphic Gap Match sub-types.

Grid Interactions Types

Grid interactions require students to enter a response by interacting with a grid area in the answer space. There are three general ways in which students can interact with the grid area.

• **Graphing Functionality:** Students can use various tool buttons to add points, lines, and other geometric shapes to the grid area. Only the Grid interaction sub-type allows you to create interactions with this functionality.

- Hot Spot Functionality: Students can click or hover over interactive regions in the grid area (hot spots) in order to activate them. Activated hot spots become highlighted, become outlined, or display an image. The Grid and Hot Spot interaction sub-types allow you to create interactions with this functionality.
 - Hotspots can be defined in groups, each of which can have its own selection constraints
 - These regions support events so clicking a hotspot might change the appearance of the interaction by showing/hiding other images, for example

School regulations include a requirement for the ration of fat to protein. Select the box in appropriate column next to each ingredient to show whether it has:								
• Les • 1 - • Mo	s than 1 gra 2 grams of re than 2 gra	m of protein fo protein for eve ams of protein	r every 3 gram ry 3 grams of f for every 3 gra	is of fat. at. ms of fat.				
	Less than 1 gram of protein for every 3 grams of fat							
	Pretzels							
	Sesame sticks							
	Chocolate bits							
	Almonds							
	Sunflower seeds							
	Raisins							
	Banana chips							
L								

- **Drag-and-Drop Functionality:** Students can click image or text objects and drag them into various locations in the grid area. The objects for these interactions are either provided in a palette beside the grid area or pre-placed within the grid area itself. The Grid and Graphic Gap Match interaction sub-types allow you to create interactions with this functionality; however, only Graphic Gap Match interactions allow text objects.
 - These palette items can be "preplaced" on the canvas or listed in a separate palette
 - The items can be placed anywhere on the canvas or guided to specific regions with snap points

Note: The functionalities of these interaction types are not mutually exclusive. A single Grid interaction may require students to select hot spots and place objects, or graph lines and select hot spots, and so on. However, a Grid interaction cannot include preplaced objects if it also includes the **Delete** tool button above the grid area.

Grid Hot Spot Interactions

Hot Spot interaction sub-types allow you to create Grid interactions with hot spot functionality. These interactions require students to select hot spot regions in the grid area.

- Only supports click-to-select "hotspots"
 - No visual side-effect events are supported
 - No hotspot groups are supported

Grid Graphic Gap Match Interactions

Graphic Gap Match interactions allow you to create Grid interactions with both hot spot and dragand-drop functionality. These interactions require students to drag image objects from a palette to hot spot regions (gaps) in the grid area.

• Only supports drag-and-drop of palette items (images or plain text) onto the canvas/background

- These palette items are always confined to a special palette region (no "preplacing" them on the canvas)
- The items can only be placed in predefined "target" regions

Alert: Graphic Gap Match interactions do not allow you to enable Snap-to-Point or Snap-to-Grid mode. You cannot pre-place image or text objects in the grid area with Graphic Gap Match Interactions.

Basically, graphic gap match and hotspot are dedicated interactions that don't support all the features of a grid. The trade-off here is:

- Graphic gap match and hotspot interactions are rendered differently (more simplistically)
- In some ways, graphic gap match and hotspot are easier to author and maintain
- Grid interactions need to use the "grid rubric tool," which is quite complicated

Simulation Interaction Editor

The Simulation Interaction Editor allows you to create content for Simulation interactions only. Simulation interactions consist of an animation tool, a set of input tools, and an output table. Students select parameters from the input tools to influence the animation. After the animation runs, the simulation results appear in the output table. Students can run multiple trials with different parameters to insert additional rows into this table.

Appendix 2-J

Shared Science Assessment Item Bank

Shared Science Assessment Item Bank

Table J-1. Spring 2023 Shared Science Assessment Operational and Field-Test Item Bank by Performance Expectation,Elementary School

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	ldaho Items	MOU Items ^a	Total Bank Items
		4-ESS1-1	2	0	14	16
	ESS1	5-ESS1-1	2	2	13	17
		5-ESS1-2	7	1	14	22
		3-ESS2-1	3	1	8	12
		3-ESS2-2	4	2	10	16
	FCCC	4-ESS2-1	4	2	10	16
Earth and Space	E332	4-ESS2-2	4	1	12	17
Sciences		5-ESS2-1	0	2	13	15
		5-ESS2-2	4	0	13	17
		3-ESS3-1	4	1	9	14
	F000	4-ESS3-1	7	1	5	13
	E223	4-ESS3-2	9	1	12	22
		5-ESS3-1	4	1	11	16
		3-LS1-1	7	0	9	16
	1.01	4-LS1-1	9	1	12	22
	LSI	4-LS1-2	3	0	16	19
		5-LS1-1	3	2	14	19
	1.00	3-LS2-1	4	2	11	17
Life Sciences	L02	5-LS2-1	2	1	16	19
Life Sciences	1.00	3-LS3-1	3	1	12	16
	L33	3-LS3-2	4	1	8	13
		3-LS4-1	4	1	12	17
	1.64	3-LS4-2	9	1	7	17
	L54	3-LS4-3	4	2	8	14
		3-LS4-4	6	1	8	15
Physical Sciences	DQ1	5-PS1-1	5	2	11	18
Physical Sciences	P51	5-PS1-2	3	1	9	13

Shared Science Assessment Item Bank
Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	Idaho Items	MOU Items ^a	Total Bank Items
		5-PS1-3	4	1	11	16
		5-PS1-4	2	2	10	14
		3-PS2-1	4	1	8	13
		3-PS2-2	5	1	7	13
	PS2	3-PS2-3	5	0	8	13
	3-PS2-4	4	0	9	13	
	5-PS2-1	4	2	7	13	
		4-PS3-1	4	1	14	19
		4-PS3-2	3	1	15	19
	PS3	4-PS3-3	3	1	11	15
		4-PS3-4	5	1	13	19
		5-PS3-1	4	2	9	15
		4-PS4-1	2	1	11	14
PS4	PS4	4-PS4-2	1	0	14	15
		4-PS4-3	4	1	13	18
	Total		174	46	457	677

Note. ^aOther MOU states include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming.

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	Idaho Items	MOU Items ^a	Total Bank Items⁵
		MS-ESS1-1	5	1	9	15
	5004	MS-ESS1-2	2	1	8	11
	E221	MS-ESS1-3	3	1	8	12
		MS-ESS1-4	4	2	10	16
		MS-ESS2-1	3	1	6	10
		MS-ESS2-2	4	0	10	14
Fouth and Output	ESSO	MS-ESS2-3	4	1	8	13
Earth and Space	E332	MS-ESS2-4	2	0	8	10
Sciences		MS-ESS2-5	3	1	9	13
		MS-ESS2-6	6	0	3	9
		MS-ESS3-1	3	0	10	13
		MS-ESS3-2	4	1	8	13
	ESS3	MS-ESS3-3	2	1	11	14
		MS-ESS3-4	2	1	11	14
		MS-ESS3-5	5	2	8	15
		MS-LS1-1	2	1	10	13
		MS-LS1-2	2	2	9	13
		MS-LS1-3	2	0	9	11
	1 91	MS-LS1-4	5	0	5	10
	LOT	MS-LS1-5	2	0	10	12
		MS-LS1-6	4	1	7	12
Life Sciences		MS-LS1-7	4	1	5	10
Life Sciences		MS-LS1-8	6	0	7	13
		MS-LS2-1	6	1	12	19
		MS-LS2-2	5	0	7	12
	LS2	MS-LS2-3	3	0	10	13
		MS-LS2-4	8	0	10	18
		MS-LS2-5	4	1	9	14
	LS3	MS-LS3-1	2	1	8	11

Table J-2. Spring 2023 Shared Science Assessment Operational and Field-Test Item Bank by Performance Expectation,Middle School

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	Idaho Items	MOU Items ^a	Total Bank Items⁵
		MS-LS3-2	4	1	9	14
		MS-LS4-1	5	1	7	13
		MS-LS4-2	2	1	8	11
	1.54	MS-LS4-3	3	1	8	12
	L34	MS-LS4-4	3	0	9	12
		MS-LS4-5	5	0	10	15
		MS-LS4-6	2	2	7	11
		MS-PS1-1	3	1	7	11
		MS-PS1-2	2	1	8	11
	DQ1	MS-PS1-3	5	1	6	12
	F31	MS-PS1-4	3	0	11	14
		MS-PS1-5	2	1	10	13
		MS-PS1-6	3	0	5	8
		MS-PS2-1	2	1	8	11
	PS2	MS-PS2-2	1	1	8	10
		MS-PS2-3	2	1	7	10
Physical Sciences		MS-PS2-4	2	2	9	13
		MS-PS2-5	1	1	13	15
		MS-PS3-1	3	1	7	11
		MS-PS3-2	2	1	8	11
	PS3	MS-PS3-3	7	0	6	13
		MS-PS3-4	3	1	7	11
		MS-PS3-5	5	1	6	12
		MS-PS4-1	3	1	7	11
	PS4	MS-PS4-2	6	1	7	14
		MS-PS4-3	2	1	9	12
Total			188	44	452	684

Note. ^aOther MOU states include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming. ^bCount excludes eight middle school MOU items that do not align to the NGSS.

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	Idaho Items	MOU Items ^a	Total Bank Items⁵
		HS-ESS1-1	2	0	4	6
		HS-ESS1-2	4	1	2	7
		HS-ESS1-3	1	1	3	5
	E331	HS-ESS1-4	2	1	2	5
		HS-ESS1-5	2	0	4	6
		HS-ESS1-6	3	0	4	7
		HS-ESS2-1	1	0	5	6
		HS-ESS2-2	3	1	4	8
Forth and Sugar		HS-ESS2-3	2	0	3	5
Earth and Space	ESS2	HS-ESS2-4	2	0	5	7
Sciences		HS-ESS2-5	2	1	3	6
		HS-ESS2-6	1	0	6	7
		HS-ESS2-7	1	1	4	6
		HS-ESS3-1	2	0	4	6
	ESS3	HS-ESS3-2	1	1	4	6
		HS-ESS3-3	0	0	3	3
		HS-ESS3-4	4	0	3	7
		HS-ESS3-5	2	1	6	9
		HS-ESS3-6	4	0	3	7
		HS-LS1-1	3	1	6	10
		HS-LS1-2	3	1	7	11
		HS-LS1-3	0	0	5	5
	LS1	HS-LS1-4	5	0	4	9
Life Sciences		HS-LS1-5	2	0	7	9
		HS-LS1-6	3	0	7	10
		HS-LS1-7	3	0	6	9
		HS-LS2-1	2	0	5	7
	LS2	HS-LS2-2	2	1	7	10
		HS-LS2-3	1	0	6	7

Table J-3. Spring 2023 Shared Science Assessment Operational and Field-Test Item Bank by Performance Expectation,High School

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	Idaho Items	MOU Items ^a	Total Bank Items ^b
		HS-LS2-4	4	1	5	10
		HS-LS2-5	3	0	4	7
		HS-LS2-6	3	0	4	7
		HS-LS2-7	4	0	7	11
		HS-LS2-8	2	0	6	8
		HS-LS3-1	1	1	7	9
	LS3	HS-LS3-2	4	1	6	11
		HS-LS3-3	3	0	5	8
		HS-LS4-1	6	1	5	12
		HS-LS4-2	2	1	4	7
	1.54	HS-LS4-3	2	1	7	10
	L54	HS-LS4-4	2	0	8	10
		HS-LS4-5	4	0	6	10
		HS-LS4-6	2	1	3	6
		HS-PS1-1	4	1	4	9
		HS-PS1-2	2	2	3	7
		HS-PS1-3	3	1	5	9
	PS1	HS-PS1-4	2	0	2	4
		HS-PS1-5	1	2	4	7
		HS-PS1-6	2	0	3	5
		HS-PS1-7	3	1	5	9
		HS-PS1-8	2	0	4	6
Physical Sciences		HS-PS2-1	2	1	5	8
Physical Sciences		HS-PS2-2	2	1	4	7
	000	HS-PS2-3	1	1	6	8
	P32	HS-PS2-4	1	1	2	4
		HS-PS2-5	2	0	1	3
		HS-PS2-6	2	2	2	6
		HS-PS3-1	2	1	5	8
	Dea	HS-PS3-2	2	1	4	7
	493	HS-PS3-3	3	2	5	10
		HS-PS3-4	2	0	5	7

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	Idaho Items	MOU Items ^a	Total Bank Items ^b
		HS-PS3-5	2	1	4	7
		HS-PS4-1	1	1	3	5
		HS-PS4-2	1	0	3	4
	PS4	HS-PS4-3	1	2	4	7
		HS-PS4-4	3	2	2	7
		HS-PS4-5	3	0	1	4
Total			154	41	295	490

Note. ^aOther MOU states include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming. ^bCount excludes one high school MOU item that does not align to the NGSS.

Appendix 2-K

Idaho Standards Achievement Test in Science Item Pool

Idaho Standards Achievement Test in Science Item Pool

 Table K-1. Spring 2023 Idaho Standards Achievement Test in Science Operational and Field-Test

 Item Pool by Performance Expectation, Grade 5

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	ldaho Items	MOU Items ^a	Total Item Pool
		ESS1-4-1	2	0	5	7
	ESS1	ESS1-5-1	1	2	5	8
		ESS1-5-2	7	1	1	9
		ESS1-3-1	2	1	6	9
		ESS1-3-2	2	2	5	9
	ESS1/2	ESS2-4-1	3	2	4	9
Earth and Space Sciences	E331/2	ESS2-4-2	3	1	4	8
		ESS2-5-1	0	2	2	4
		ESS2-5-2	1	0	1	2
		ESS2-3-1	3	1	2	6
	E992/3	ESS3-4-1	5	1	2	8
	2002/5	ESS3-4-2	5	1	3	9
		ESS3-5-1	3	1	2	6
Life Sciences		LS1-4-1	9	1	4	14
	LS1	LS1-4-2	1	0	8	9
		LS1-5-1	3	2	6	11
	1.51/2	LS1-3-1	4	2	7	13
	201/2	LS2-4-1	1	1	6	8
	1.52-3	LS2-3-1	2	1	4	7
	202-0	LS2-3-2	3	1	4	8
		LS2-5-1	2	1	3	6
	LS2-5	LS2-5-2	6	1	1	8
		LS2-5-3	2	2	2	6
		LS2-5-4	2	1	6	9
		PS1-5-1	5	2	4	11
	PS1	PS1-5-2	2	1	4	7
	101	PS1-5-3	3	1	1	5
		PS1-5-4	1	2	4	7
		PS1-3-1	3	1	3	7
		PS1-3-2	4	1	1	6
	PS1/2	PS1-3-3	3	0	4	7
		PS1-3-4	1	0	5	6
Physical Sciences		PS2-5-1	2	2	3	7
		PS1-4-1	4	1	6	11
		PS1-4-2	3	1	3	7
	PS1/3	PS1-4-3	2	1	8	11
		PS1-4-4	4	1	6	11
		PS3-5-1	3	2	4	9
		PS2-4-1	1	1	6	8
	PS2	PS2-4-2	1	0	6	7
		PS2-4-3	2	1	5	8
То	otal		116	46	166	328

^aMOU state items administered include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming.

Table K-2. Spring 2023 Idaho Standards Achievement Test in Science Operational and Field-TestItem Pool by Performance Expectation, Grade 8								
Disciplinary Performance Idaho MOU Total Item								

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	ldaho Items	MOU Itemsª	Total Item Pool
		ESS1-MS-1	5	1	3	9
		ESS1-MS-2	2	1	0	3
	E991	ESS1-MS-3	2	1	2	5
		ESS1-MS-4	3	2	4	9
		ESS2-MS-1	3	1	4	8
		ESS2-MS-2	2	0	1	3
	ESS2	ESS2-MS-3	3	1	5	9
Earth and Space Sciences	2002	ESS2-MS-4	2	0	3	5
		ESS2-MS-5	2	1	3	6
		ESS2-MS-6	3	0	1	4
		ESS3-MS-1	2	0	1	3
		ESS3-MS-2	2	1	4	7
	ESS3	ESS3-MS-3	1	1	2	4
		ESS3-MS-4	2	1	1	4
		ESS3-MS-5	5	2	4	11
		LS1-MS-1	1	1	5	7
	LS1	LS1-MS-2	2	2	3	7
		LS1-MS-3	1	0	1	2
	201	LS1-MS-4	0	0	0	0
		LS1-MS-5	3	1	1	5
		LS1-MS-6	2	1	1	4
	LS2	LS2-MS-1	5	1	4	10
		LS2-MS-2	4	0	2	6
		LS2-MS-3	3	0	2	5
Life Sciences		LS2-MS-4	0	3	0	3
		LS2-MS-5	8	0	6	14
		LS2-MS-6	4	1	3	8
	LS3	LS3-MS-1	2	1	3	6
		LS3-MS-2	3	1	3	1
		LS4-MS-1	5	1	3	9
		LS4-MS-2	1	1	4	6
	LS4	LS4-MS-3	1	1	2	4
		LS4-MS-4	3	0	3	0
		LS4-MS-5	5	0	2	1
		LS4-MS-0	1			4
		DQ1 MQ 0	ו ר	1	<u>ວ</u>	3 6
		PS1-IVIS-2	2	1	3	6
	PS1	DQ1 MQ 1	3 1	0	Δ	5
Physical Sciences		DQ1 MQ 5	1	1	4	2
riiysicai sciences		DQ1 MQ A	ו ר	0	ו ס	<u>з</u> л
		PS1-1010-0	2	1	2	4 6
	D60	PS2_MS 2	<u> </u>	1	<u>з</u>	6
	F GZ	PS2-MS-2	2	1	3	6
	ļ	1 02-100-0	∠ _		5	

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	ldaho Items	MOU Itemsª	Total Item Pool
		PS2-MS-4	1	2	3	6
		PS2-MS-5	0	1	2	3
		PS3-MS-1	2	1	1	4
		PS3-MS-2	2	1	3	6
	PS3	PS3-MS-3	6	0	3	9
		PS3-MS-4	2	1	2	5
		PS3-MS-5	5	1	1	7
		PS4-MS-1	2	1	2	5
	PS4	PS4-MS-2	5	1	2	8
		PS4-MS-3	1	1	2	4
Т	134	47	133	314		

Note. aMOU state items administered include Connecticut, Hawaii, Montana, Rhode Island, Oregon, Utah, West Virginia, and Wyoming.

Table K-3.	Spring	2023	Idaho	Standards	Achieven	nent T	Test in	Science	Operational	and	Field-	Test
			Item F	Pool by Pe	rformance	Expe	ectatior	n, Grade	11			

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	ldaho Items	MOU Itemsª	Total Item Pool⁵
		ESS1-HS-1	1	0	3	4
		ESS1-HS-2	3	1	1	5
		ESS1-HS-3	1	1	2	4
	E331	ESS1-HS-4	2	1	2	5
		ESS1-HS-5	2	0	2	4
		ESS1-HS-6	3	0	2	5
		ESS2-HS-1	0	0	2	2
		ESS2-HS-2	2	1	4	7
Forth and Space Sciences	ESSO	ESS2-HS-3	1	0	0	1
Earth and Space Sciences	E332	ESS2-HS-4	1	0	1	2
		ESS2-HS-5	2	1	0	3
		ESS2-HS-7	1	1	1	3
		ESS3-HS-1	2	0	3	5
		ESS3-HS-2	0	1	1	2
	5000	ESS3-HS-3	0	0	3	3
	E883	ESS3-HS-4	4	0	1	5
		ESS3-HS-5	2	1	2	5
		ESS3-HS-6	3	0	3	6
		LS1-HS-1	2	1	3	6
		LS1-HS-2	3	1	2	6
		LS1-HS-3	0	0	2	2
	LS1	LS1-HS-4	4	0	1	5
		LS1-HS-5	2	0	5	7
		LS1-HS-6	3	0	2	5
		LS1-HS-7	3	0	6	9
		LS2-HS-1	2	0	2	4
		LS2-HS-2	2	1	0	3
		LS2-HS-3	1	0	3	4
		LS2-HS-4	3	1	1	5
	LS2	LS2-HS-5	2	0	1	3
Life Sciences		LS2-HS-6	2	0	1	3
		LS2-HS-7	2	0	2	4
		LS2-HS-8	2	0	2	4
		LS3-HS-1	0	1	2	3
	LS3	LS3-HS-2	4	1	1	6
		LS3-HS-3	3	0	2	5
		LS4-HS-1	6	1	2	9
		LS4-HS-2	2	1	2	5
		LS4-HS-3	2	1	3	6
	LS4	LS4-HS-4	1	0	2	3
		LS4-HS-5	3	0	2	5
		LS4-HS-6	1	1	2	4
		PSC1-HS-1	0	1	0	1
Physical Sciences	PSC1/2	PSC1-HS-2	3	1	1	5

Science Discipline	Disciplinary Core Idea	Performance Expectation	ICCR Items	ldaho Items	MOU Itemsª	Total Item Pool ^ь
		PSC1-HS-3	3	1	3	7
		PSC1-HS-4	1	0	2	3
		PSC1-HS-5	0	2	0	2
		PSC2-HS-1	1	2	2	5
		PSC2-HS-2	2	0	2	4
		PSC2-HS-3	1	2	1	4
		PSC2-HS-4	3	1	1	5
		PSC2-HS-5	2	0	2	4
		PSC3-HS-1	0	1	0	1
		PSC3-HS-2	1	1	0	2
	PSC3	PSC3-HS-3	0	0	1	1
		PSC3-HS-4	1	0	2	3
		PSC3-HS-5	1	0	2	3
		PSP1-HS-1	2	1	1	4
		PSP1-HS-2	1	1	3	5
		PSP1-HS-3	1	1	2	4
	FJFT	PSP1-HS-4	1	1	2	4
		PSP1-HS-5	1	0	1	2
		PSP1-HS-6	2	0	0	2
		PSP2-HS-2	1	1	2	4
	PSP2	PSP2-HS-3	0	2	0	2
		PSP2-HS-5	1	1	3	5
		PSP3-HS-1	1	1	1	3
		PSP3-HS-2	1	0	2	3
	PSP3	PSP3-HS-3	0	1	2	3
		PSP3-HS-4	2	2	1	5
		PSP3-HS-5	2	0	1	3
T	otal		120	42	124	286

Note. ^aMOU state items administered include Connecticut, Hawaii, Rhode Island, Oregon, West Virginia, and Wyoming. ^bThe total count excludes three field-tested items intended for the interim pool.

Appendix 2-L

Adaptive Algorithm Design

TABLE OF CONTENTS

1.	INTRODUCTION, BACKGROUND, AND DEFINITIONS2				
1.1	Blueprint				
1.2	Content Value				
	1.2.1	Content Value for Single Items	5		
	1.2.2	Content Value for Sets of Items	6		
1.3	Informati	on Value	7		
	1.3.1	Individual Information Value	7		
	1.3.2	Binary Items	7		
	1.3.3	Polytomous Items	7		
	1.3.4	Item Group Information Value1	0		
2.	ENTRY A	AND INITIALIZATION1	1		
2.1	Item Pool11				
2.2	Adjust Segment Length				
2.3	Initialization of Starting Theta Estimates				
2.4	Insertion Of Embedded Field-Test Items				
3.	ITEM SELECTION				
3.1	Trimming	g The Custom Item Pool1	3		
3.2	Recycling Algorithm				
3.3	ADAPTIVE ITEM SELECTION				
3.4	Selection of The Initial Item15				
3.5	Exposure Control15				
4.	TERMINA	ATION	6		
APPEN	dix 1. Di	EFINITIONS OF USER-SETTABLE PARAMETERS1	7		
APPEN	dix 2. Su	PPORTING DATA STRUCTURES	9		
ADDEN	NDUM. AI	DJUSTMENTS TO THE USE OF ITEM CLUSTERS	0		

Adaptive Item Selection Algorithm

1. INTRODUCTION, BACKGROUND, AND DEFINITIONS

This document describes the adaptive item selection algorithm. The item selection algorithm is designed to cover a standards-based blueprint, which may include content, cognitive complexity, and item type constraints. The item selection algorithm will also include:

- the ability to customize an item pool based on access constraints and screen items that have been previously viewed or may not be accessible for a given individual;
- a mechanism for inserting embedded field-test items; and
- a mechanism for delivering "segmented" tests in which separate parts of the test are administered in a fixed order.

This document describes the algorithm and the design for its implementation for the test delivery system (TDS). The implementation builds extensively on the algorithm implemented in the Cambium Assessment, Inc (CAI)'s TDS and incorporates substantial CAI intellectual property. CAI will release the algorithm and the implementation described here under the same open-source license under which the rest of the open-source system is released.

The general approach described here is based on a highly parameterized multiple-objective utility function. The objective function includes:

- a measure of content match to the blueprint;
- a measure of overall test information; and
- measures of test information for each reporting category on the test.

We define an objective function that measures an item's contribution to each of these objectives, weighting them to achieve the desired balance among them. Equation (1) sketches this objective function for a single item.

$$f_{ijt} = w_2 \frac{1}{\sum_{r=1}^{R} d_{rj}} \sum_{r=1}^{R} s_{rit} p_r d_{rj} + w_1 \sum_{k=1}^{K} q_k h_{1k} (v_{kijt}, V_{kit}, t_k) + w_0 h_0 (u_{ijt}, U_{it}, t_0)$$
(1)

where the term w represents user-supplied weights that assign relative importance to meeting each of the objectives d_{rj} indicates whether item *j* has the blueprint-specified feature *r*, and p_r is the user-supplied priority weight for feature *r*. The term s_{rit} is an adaptive control parameter that is described. In general, s_{rit} increases for features that have not met their designated minimum as the end of the test approaches.

The remainder of the terms represents an item's contribution to measurement precision:

- v_{kijt} is the value of item *j* toward reducing the measurement error for reporting category *k* for examinee *i* at selection *t*; and
- u_{ijt} is the value of item *j* in terms of reducing the overall measurement error for examinee *i* at selection *t*.

The terms U_{it} and V_{kit} represent the total information overall and on reporting category k, respectively.

The term q_k is a user-supplied priority weight associated with the precision of the score estimate for reporting category k. The terms t represent precision targets for the overall score (t_0) and each score reporting category score. The functions h(.) are given by:

$$h_0(u_{ijt}, U_{it}, t_0) = \begin{cases} au_{ijt} \text{ if } U_{it} < t_0\\ bu_{ijt} \text{ otherwise} \end{cases}$$
$$h_{1k}(v_{kijt}, V_{kit}, t_k) = \begin{cases} c_k v_{kijt} \text{ if } V_{kit} < t_k\\ d_k v_{kijt} \text{ otherwise} \end{cases}$$

Items can be selected to maximize the value of this function. This objective function can be manipulated to produce a pure, standards-free adaptive algorithm by setting w_2 to zero or a completely blueprint-driven test by setting $w_1 = w_0 = 0$. Adjusting the weights to optimize performance for a given item pool will enable users to maximize information subject to the constraint that the blueprint is virtually always met.

We note that the computations of the content values and information values generate values on very different scales, and that the scale of the content value varies as the test progresses. Therefore, we normalize both the information and content values before computing the value of Equation (1).

This normalization is given by $x = \begin{cases} 1 \text{ if } min = max \\ \frac{v - min}{max - min} \text{ otherwise} \end{cases}$, where min and max represent the

minimum and maximum, respectively, of the metric computed over the current set of items or item groups.

The remainder of this section describes the overall program flow, the form of the blueprint, and the various value calculations employed in the objective function. Subsequent sections describe the details of the selection algorithm.

1.1 BLUEPRINT

Each test will be described by a single blueprint for each segment of the test and will identify the order in which the segments appear. The blueprint will include:

- an indicator of whether the test is adaptive or fixed form;
- termination conditions for the segment, which are described in a subsequent section;
- a set of nested content constraints, each of which is expressed as:

- the minimum number of items to be administered within the content category;
- the maximum number of items to be administered within the content category;
- an indication of whether the maximum should be deterministically enforced (a "strict" maximum);
- a priority weight for the content category p_r ;
- an explicit indicator as to whether this content category is a reporting category; and
- \circ an explicit precision-priority weight (q_k) for each group identified as a reporting category.
- a set of non-nested content constraints, which are represented as:
 - a name for the collection of items meeting the constraint;
 - the minimum number of items to be administered from this group of items;
 - the maximum number of items to be administered from this group of items;
 - an indication of whether the maximum should be deterministically enforced (a "strict" maximum);
 - a priority weight for the group of items p_r ;
 - an explicit indicator as to whether this named group will make up a reporting category; and
 - $\circ\,$ an explicit precision-priority weight (q_k) for each group identified as a reporting category.
 - The priority weights, p_r on the blueprint, can be used to express values in the blueprint match. Large weights on reporting categories paired with low (or zero) weights on the content categories below them may allow more flexibility to maximize information in a content category covering fewer fine-grained targets, while the reverse would mitigate toward more reliable coverage of finer-grained categories, with less content flexibility within reporting categories.

An example of a blueprint specification appears in Appendix J-1.

1.2 CONTENT VALUE

Each item or item group will be characterized by its contribution to meeting the blueprint, given the items that have already been administered at any point. The contribution is based on the presence or absence of features specified in the blueprint and denoted by the term d in Equation (1). This section describes the computation of the content value.

1.2.1 Content Value for Single Items

For each constraint appearing in the blueprint (r), an item *i* either does or does not have the characteristic described by the constraint. For example, a constraint might require a minimum of four and a maximum of six algebra items. An item measuring algebra has the described characteristic, and an item measuring geometry, but algebra does not. To capture this constraint, we define the following:

- d_j is a feature vector in which the elements are d_{rj} , summarizing item j's contribution to meeting the blueprint. This feature vector includes content categories such as claims and targets as well as other features of the blueprint, such as Depth of Knowledge (DOK) and item type.
- S_{it} is a diagonal matrix, the diagonal elements of which are the adaptive control parameters S_{rit} .
- p is the vector containing the user-supplied priority weights p_r .

The scalar content value for an item is given by $C_{ijt} = d'_j S_{it} p$.

Letting z_{rit} represent the number of items with feature r administered to student i by iteration t, the value of the adaptive control parameters is:

$$s_{rit} = \begin{cases} m_{it} \left(2 - \frac{z_{rit}}{Min_r} \right) & \text{if } z_r < Min_r \\ 1 - \frac{z_{rit} - Min_r}{Max_r - Min_r} & \text{if } Min_r < z_{rit} < Max \\ \left(Max_r - z_{rit} \right) - 1 & \text{if } Max_r \le z_{rit} \end{cases}$$

The blueprint defines the minimum (Min_r) and maximum (Max_r) number of items to be administered with each characteristic (r).

The term $m_{it} = \frac{T}{T-t}$ where T is the total test length. This has the effect of increasing the algorithm's preference for items that have not yet met their minimums as the end of the test nears and the opportunities to meet the minimum diminish.

This increases the likelihood of selecting items for content that has not met its minimum as the opportunities to do so are used up. The value s is highest for items with content that has not met its minimum, declines for items representing content for which the minimum number of items has been reached but the maximum has not, and turns negative for items representing content that has met the maximum.

1.2.2 Content Value for Sets of Items

Calculation of the content value of sets of items is complicated by two factors:

- 1. The desire to allow more items to be developed for each set and to have the most advantageous set of items administered.
- 2. The design objective of characterizing the information contribution of a set of items as the expected information over the working theta distribution for the examinee.

The former objective is believed to enhance the ability to satisfy highly constrained blueprints while still adapting to obtain good measurement for a broad range of students. The latter arises from the recognition that English Language Arts (ELA) tests will select one set of items at a time, without an opportunity to adapt once the passage has been selected.

The general approach involves successive selection of the highest content value item in the set until the indicated number of items in the set have been selected. Because the content value of an item changes with each selection, a temporary copy of the already-administered content vector for the examinee is updated with each selection such that subsequent selections reflect the items selected in previous iterations.

Exhibit A on the following page presents a flowchart for this calculation. Readers will note the check to determine whether $w_0 > 0$ or $w_1 > 0$. These weights, defined with Equation (1), identify the user-supplied importance of information optimization relative to blueprint optimization. In cases such as independent field tests, this weight may be set to zero, as it may not be desirable to make item administration dependent on the match to student performance. In more typical adaptive cases where item statistics will not be recalculated, favoring more informative items is generally better. The final measure of content value for the set of selected set of items is divided by the number of items selected to avoid a bias toward selection of sets with more items.

Exhibit A. Content Value Calculation for Item Sets

1.3 INFORMATION VALUE

Each item or item group also has value in terms of maximizing information, both overall and on reporting categories.

1.3.1 Individual Information Value

The information value associated with an item will be an approximation of information. The system will be designed to use generalized Item Response Theory (IRT) models; however, it will treat all items as though they offer equal measurement precision. This is the assumption made by the Rasch model, but in more general models, items known to offer better measurement are given preference by many algorithms. Subsequent algorithms are then required to control the exposure of the items that measure best. Ignoring the differences in slopes serves to eliminate this bias and help equalize exposure.

1.3.2 Binary Items

The approximate information value of a binary item will be characterized as $I_j(\theta) = p_j(\theta)(1 - p_j(\theta))$, where the slope parameters are artificially replaced with a constant.

1.3.3 Polytomous Items

In terms of information, the best polytomous item in the pool is the one that maximizes the expected information, $I_j(\theta)$. Formally, $I_j(\theta) > I_k(\theta)$ for all items $k \neq j$. The true value θ ,

however, remains unknown and is accessed only through an estimate, $\hat{\theta} \sim N(\bar{\theta}, \sigma_{\theta})$. By definition of an expectation, the expected information $I_i(\theta) = \int I_i(t) f(t|\bar{\theta}, \sigma_{\theta}) dt$.

The intuition behind this result is illustrated in Exhibit B. In Exhibit B, each panel graphs the distribution of the estimate of θ for an examinee. The top panel assumes a polytomous item in which one step threshold (A1) matches the mean of the θ estimate distribution. In the bottom panel, neither step threshold matches the mean of the θ estimate distribution. The shaded area in each panel indicates the region in which the hypothetical item depicted in the panel provides more information. We see that approximately 2/3 of the probability density function is shaded in the lower panel, while the item depicted in the upper panel dominates in only about 1/3 of the cases. In this example, the item depicted in the lower panel has a much greater probability of maximizing the information from the item, despite the fact that the item in the upper panel has a threshold exactly matching the mean of the estimate distribution and the item in the lower panel does not.

Exhibit B. Two Example Items, with the Shaded Region Showing the Probability that the Item Maximizes Information for the Examinee Depicted

Exhibit C on the following page shows what happens to information as the estimate of this student's proficiency becomes more precise (later in the test). In this case, the item depicted in the top panel maximizes information about 65 to70 percent of the time, compared to about 30 to 35 percent for the item depicted in the lower panel. These are the same items depicted in the Exhibit B, but in this case, we are considering information for a student with a more precise current proficiency estimate.

The approximate information value of polytomous items will be characterized as the expected information, specifically $E[I_j(\theta)|m_i, s_i] = \int \sum_{k=1}^{K} I_{jk}(t) p_j(k|t) \phi(t; m_i, s_i) dt$, where $I_{jk}(t)$ represents the information at t of response k to item j, $p_j(k|t)$ is the probability of response k to item j (artificially holding slope constant), given proficiency t, $\phi(.)$ represents the normal probability density function, and m_i and s_i represent the mean and standard deviation of examinee *i*'s current estimated proficiency distribution.

We propose to use Gauss-Hermite quadrature with a small number of quadrature points (approximately five). Experiments show that we can complete this calculation for 1,000 items in fewer than 5 milliseconds, making it computationally reasonable.

As with the binary items, we propose to ignore the slope parameters to even exposure and avoid a bias toward the items with better measurement.

1.3.4 Item Group Information Value

Item groups differ from individual items in that a set of items will be selected for administration. Therefore, the goal is to maximize information across the working theta distribution. As with the polytomous items, we propose to use Gauss-Hermite quadrature to estimate the expected information of the item group.

In the case of multiple-item groups

$$E[I_g(\theta)|m_i, s_i] = \frac{1}{J_g} \int \sum_{j=1}^{J_g} I_{g(j)}(t) \phi(t; m_i, s_i) dt$$

Where $I_g(.)$ is the information from item group g, $I_{g(j)}$ is the information associated with item $j \in g$, for the J_g items in set g. In the case of polytomous items, we use the expected information, as described above.

2. ENTRY AND INITIALIZATION

At startup, the system will

- create a custom item pool;
- initialize theta estimates for the overall score and each score point; and
- insert embedded field-test items.

2.1 ITEM POOL

At test startup, the system will generate a *custom item pool*, a string of item IDs for which the student is eligible. This item pool will include all items that

- are active in the system at test startup; and
- are not flagged as "access limited" for attributes associated with this student.

The list will be stored in ascending order of ID.

2.2 ADJUST SEGMENT LENGTH

Custom item pools run the risk of being unable to meet segment blueprint minimums. To address this special case, the algorithm will adjust the blueprint to be consistent with the custom item pool. This capability becomes necessary when an accommodated item pool systematically excludes some content.

Let

S be the set of top-level content constraints in the hierarchical set of constraints, each consisting of the tuple (*name*, *min*, *max*, *n*);

C be the custom item pool, each element consisting of a set of content constraints B;

f, p integers represent item shortfall and pool count, respectively; and

t be the minimum required items on the segment.

For each s in S, compute n as the sum of active operational items in C classified on the constraint.

f = summation over S (min – n)

 \boldsymbol{p} = summation over S(n)

if t - f < p, then t = t - f

2.3 INITIALIZATION OF STARTING THETA ESTIMATES

The user will supply five pieces of information in the test configuration:

1. A default starting value if no other information is available

- 2. An indication whether prior scores on the same test should be used, if available
- 3. Optionally, the test ID of another test that can supply a starting value, along with
- 4. Slope and intercept parameters to adjust the scale of the value to transform it to the scale of the target test
- 5. A constant prior variance for use in calculation of working EAP scores

2.4 INSERTION OF EMBEDDED FIELD-TEST ITEMS

Each blueprint will specify

- the number of field-test items to be administered on each test;
- the first item position into which a field-test item may be inserted; and
- the last item position into which a field-test item may be inserted.

Upon startup, select randomly from among the field-test items or item sets until the system has selected the specified number of field-test items. If the items are in sets, the sets will be administered as a complete set, and this may lead to more than the specified number of items administered.

The probability of selection will be given by $p_j = \frac{\sum_{j=1}^{K} K_j}{\sum_{j=1}^{K} a_j K_j} \frac{m}{N_j}$, where

 p_j represents the probability of selecting the item;

m is the targeted number of field-test items;

 N_j is the total number of active items in the field-test pool;

 K_j is the number of items in item set j; and

 a_j is a user-supplied weight associated with each item (or item set) to adjust the relative probability of selection.

The a_j variables are included to allow for operational cases in which some items must complete field testing sooner or enter field testing later. While using this parameter presents some statistical risk, not doing so poses operational risks.

For each item set, generate a uniform random number r_j on the interval {0,1}. Sort the items in ascending order by $\frac{r_j}{p_j}$. Sequentially select items, summing the number of items in the set. Stop the selection of field-test items once $FTNMin \le m \le FTNMax = \sum_{j=0} K_j$.

Next, each item is assigned to a position on the test. To do so, select a starting position within f - FTMax - FTMin positions from FTMin, where FTMax is the maximum allowable position for field-test items and FTMin is the minimum allowable position for field-test items. FTNMin and FTNMax refer to the minimum and maximum number of field-test items, respectively. Distribute the items evenly within these positions.

3. ITEM SELECTION

Exhibit D summarizes the item selection process. If the item position has been designated for a field-test item, administer that item. Otherwise, the adaptive algorithm kicks in.

Exhibit D. Summary of Item Selection Process

This approach is a "content first" approach designed to optimize match to blueprint. An alternative, "information first" approach, is possible. Under an information first approach, all items within a specified information range would be selected as the first set of candidates, and subsequent selection within that set would be based, in part, on content considerations. The engine is being designed so that future development could build such an algorithm using many of the calculations already available.

3.1 TRIMMING THE CUSTOM ITEM POOL

At each item selection, the active item pool is modified in four steps:

- 1. The custom item pool is intersected with the active item pool, resulting in a custom active item pool.
- 2. Items already administered on this test are removed from the custom active item pool.

- 3. Items that have been administered on prior tests are tentatively removed (see Section 3.2, Recycling Algorithm).
- 4. Items that measure content that has already exceeded a strict maximum are tentatively removed from the pool, removing entire sets containing items that meet this criterion.

3.2 RECYCLING ALGORITHM

When students are offered multiple opportunities to test, or when prior tests have been started and invalidated, students will have seen some of the items in the pool. The trimming of the item pool eliminates these items from the pool. It is possible that in such situations, the pool may no longer contain enough items to meet the blueprint.

Hence, items that have been seen on previous administrations may be returned to the pool. If there are not enough items remaining in the pool, the algorithm will recycle items (or item groups) with the required characteristic that is found in insufficient numbers. Working from the least recently administered group, items (or item groups) are reintroduced into the pool until the number of items with the required characteristics meets the minimum requirement. When item groups are recycled, the entire group is recycled rather than an individual item. Items administered on the current test are never recycled.

3.3 ADAPTIVE ITEM SELECTION

Selection of items will follow a common logic, whether the selection is for a single item or an item group. Item selection will proceed in the following three steps:

- 1. Select Candidate Set 1 (*cset1*).
 - a. Calculate the content value of each item or item group.
 - b. Sort the item groups in descending order of content value.
 - c. Select the top *cset1size*, a user-supplied value that may vary by test.
- 2. Select Candidate Set 2 (*cset2*).
 - a. Calculate the information values for each item group in *cset1*.
 - b. Calculate the overall value of each item group in *cset1* as defined in Equation (1).
 - c. Sort *cset2* in descending order of value.
 - d. Select the top *cset2size* item groups, where *cset2size* is a user-supplied value that may vary by test.
- 3. Select the item or item group to be administered.
 - a. Select randomly from *cset2* with uniform probability.

Note that a "pure adaptive" test, without regard to content constraints, can be achieved by setting *cset1size* to the size of the item pool and w_2 , the weight associated with meeting content constraints

in Equation (1), to zero. Similarly, linear on-the-fly tests can be constructed by setting w_0 and w_1 to zero.

3.4 SELECTION OF THE INITIAL ITEM

Selection of the initial item can affect item exposure. At the start of the test, all tests have no content already administered, so the items and item groups have the same content value for all examinees. In general, it is a good idea to spread the initial item selection over a wider range of content values. Therefore, we define an additional user-settable value, *csetlinitialsize*, which is the size of Candidate Set 1 on the first K items only, where K is the number of reporting categories. Similarly, we define *cset2initialisize*.

3.5 EXPOSURE CONTROL

This algorithm uses randomization to control exposure and offers several parameters that can be adjusted to control the tradeoff between optimal item allocation and exposure control. The primary mechanism for controlling exposure is the random selection from *CSET2*, the set of items or item groups that best meet the content and information criteria. These represent the "top k" items, where k can be set. Larger values of k provide more exposure control at the expense of optional selection.

In addition to this mechanism, we avoid a bias toward items with higher measurement precision by treating all items as though they measured with equal precision by ignoring variation in the slope parameter. This has the effect of randomizing over items with differing slope parameters. Without this step, it would be necessary to have other *post hoc* explicit controls to avoid the overexposure of items with higher slope parameters, an approach that could lead to different test characteristics over the course of the testing window.

4. **TERMINATION**

The algorithm will have configurable termination conditions. These may include

- administering a minimum number of items in each reporting category and overall;
- achieving a target level of precision on the overall test score;
- achieving a target level of precision on all reporting categories; and
- achieving a score insufficiently distant from a specified score with sufficient precision (e.g., less than two standard errors below proficient). Cambium Assessment, Inc (CAI) envisions this being used in conjunction with other termination conditions to allow very high or very low achieving students to continue on to a segment that contains items from adjacent grades but barring other students from those segments.

We will define four user-defined flags indicating whether each of these is to be considered in the termination conditions (*TermCount*, *TermOverall*, *TermReporting*, *TermTooClose*). A fifth user-supplied value will indicate whether these are taken in conjunction or if satisfaction of any one of them will suffice (*TermAnd*). Reaching the minimum number of items is always a necessary condition for termination.

In addition, two conditions will each individually and independently cause termination of the test:

- 1. Administering the maximum number of items specified in the blueprint
- 2. Having no items in the pool left to administer

APPENDIX 1. DEFINITIONS OF USER-SETTABLE PARAMETERS

This appendix	x summarizes	the user-setta	able parameters	in the a	adaptive algorithm.
			r		· · · · · · · · · · · · · · · · · · ·

Parameter Name	Description	Entity Referred to by Subscript Index
<i>w</i> ₀	Priority weight associated with overall information	N/A
<i>w</i> ₁	Priority weight associated with reporting category information	N/A
<i>w</i> ₂	Priority weight associated with match to blueprint	N/A
q_k	Priority weight associated with a specific reporting category	reporting categories
p_r	Priority weight associated with a feature specified in the blueprint (These inputs appear as a component of the blueprint.)	features specified in the blueprint
а	Parameter of the function $h(.)$ that controls the overall information weight when the information target has not yet been hit	N/A
b	Parameter of the function $h(.)$ that controls the overall information weight after the information target has been hit	N/A
C _k	Parameter of the function $h(.)$ that controls the information weight when the information target has not yet been hit for reporting category k	reporting categories
d_k	Parameter of the function $h(.)$ that controls the information weight after the information target has been hit for reporting category k	reporting categories
cset1size	Size of candidate pool based on contribution to blueprint match	N/A
cset1initialsize	Size of candidate pool based on contribution to blueprint match for the first <i>K</i> items or item sets selected	N/A
cset2size	Size of final candidate pool from which to select randomly	N/A
cset2initialsize	Size of candidate pool based on contribution to blueprint match and information for the first item or item set selected	
t_0	Target information for the overall test	N/A
t_k	Target information for reporting categories	reporting categories
startTheta	A default starting value if no other information is available	N/A
startPrevious	An indication of whether previous scores on the same test should be used, if available	N/A
startOther	The test ID of another test that can supply a starting value, along with startOtherSlope	N/A
startOtherSlope	Slope parameter to adjust the scale of the value to transform it to the scale of the target test	N/A

Parameter Name	Description	Entity Referred to by Subscript Index	
startOtherInt	Intercept parameter to adjust the scale of the value to transform it to the scale of the target test	N/A	
FTMin	Minimum position in which field-test items are allowed	N/A	
FTMax	Maximum position in which field-test items are allowed	N/A	
FTNMin	Target minimum number of field-test items	N/A	
FTNMax	Target maximum number of field-test items	N/A	
aj	Weight adjustment for individual embedded field-test items used to increase or decrease their probability of selection	field-test items	
AdaptiveCut	The overall score cutscore, usually proficiency, used in consideration of <i>TermTooClose</i>		
TooCloseSEs	The number of standard errors below which the difference is considered "too close" to the adaptive cut to proceed. In general, this will signal proceeding to a final segment that contains off-grade items.		
TermOverall	Flag indicating whether to use the overall information target as a termination criterion	N/A	
TermReporting	Flag to indicate whether to use reporting category information target as a termination criterion	N/A	
TermCount	Flag to indicate whether to use minimum test size as a termination condition	N/A	
TermTooClose	Terminate if you are not sufficiently distant from the specified adaptive cut		
TermAnd	Flag to indicate whether the other termination conditions are to be taken separately or conjunctively	N/A	

APPENDIX 2. SUPPORTING DATA STRUCTURES

Cambium Assessment, Inc (CAI) Cautions and Caveats

- Use of standard error termination conditions will likely cause inconsistencies between the blueprint content specifications, and the information criteria will cause unpredictable results, likely leading to failures to meet blueprint requirements.
- The field-test positioning algorithm outlined here is very simple and will lead to deterministic placement of field-test items.

ADDENDUM. ADJUSTMENTS TO THE USE OF ITEM CLUSTERS

Cambium Assessment, Inc (CAI) adjusted the adaptive algorithm to the use of item clusters as follows:

- Using marginal maximum likelihood estimator (MMLE) to update proficiency estimates, marginalizing out cluster effects.
- Normalizing the information by the number of assertions within an item, to avoid overselection of item clusters and stand-alone items with more assertions.